KnigaRead.com/

Алексей Крылов - Мои воспоминания

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Алексей Крылов, "Мои воспоминания" бесплатно, без регистрации.
Перейти на страницу:

Далее следует изучение ускорения точек неизменяемой системы в абсолютном движении, указывается аналогия выражений проекций ускорения на координатные оси с выражениями проекций скоростей и дается понятие о центре ускорений.

Последний отдел кинематики заключает учение об относительном движении, причем сперва рассматривается движение точки по отношению к движущейся системе и выводятся выражения проекций скоростей и ускорений, а затем исследуется движение одной неизменяемой системы по отношению к другой; аналитически выводится правило сложения угловых скоростей, и в заключение получается теорема Шаля о разложении винтового движения на два вращательных.

Непосредственным продолжением «Кинематики» служит «Динамика материальной точки». Содержание этого курса следующее. По установлении основных понятий и формулировке законов инерции и независимости действия сил рассматривается движение свободной материальной точки, сперва прямолинейное, причем приводятся обычные случаи интегрируемости в квадратурах уравнений такого движения, затем криволинейное, причем сперва разбираются случаи, когда траектория есть кривая плоская, и как пример рассматриваются общие свойства движения тяжелой точки в среде, сопротивление которой выражается заданной функцией скорости. Движение под действием центральной силы изучается более подробно как для Ньютонова закона притяжения, так и для притяжения, пропорционального первой степени расстояния. Далее рассматривается движение точки под действием силы, имеющей силовую функцию, причем доказываются свойства так называемой главной функции и связь между полным решением дифференциального уравнения в частных производных, которому она удовлетворяет, с интегралами уравнений движения точки, и для примера по этой методе составляются интегралы уравнений движения точки, притягиваемой к неподвижному центру по какому-либо закону, в зависимости от расстояния. Учение о движении свободной точки заканчивается рассмотрением относительного движения такой точки, причем подробно разобран случай движения тяжелой точки по отношению к земле.

Динамика несвободной материальной точки начинается с установления условий, которым должны удовлетворять скорость и ускорение точки при движении ее по данной поверхности, как удерживающей, так и неудерживающей; составляются выражения реакции поверхности и силы трения и уравнения движения точки для того и другого случая, для поверхности, как постоянной, так и изменяющейся с течением времени. Совершенно так же рассматривается вопрос о движении точки по данной постоянной или переменной кривой с трением и без трения. После вывода условия, при котором существует для несвободного движения точки интеграл живой силы, рассматривается движение тяжелой точки по заданной линии и как пример — математический маятник без сопротивления и при сопротивлении, пропорциональном квадрату скорости, не ограничиваясь при этом случаем малых колебаний. Затем дается решение задач о таутохроне и брахистохроне, для первой весьма простое, принадлежащее Puiseux, для второй — по общим правилам вариационного исчисления. Как пример движения точки по движущейся линии рассматривается задача о движении точки по вращающейся прямой. В примерах движения точки по поверхности сперва рассматривается случай движения без действия внешних сил и дается понятие о геодезической линии для данной поверхности, затем исследуется движение сферического маятника, маятника Фуко и движение точки по вращающейся плоскости. Курс заканчивается рассмотрением вопроса об ударе точки о поверхность.

Лекции о механике систем точек начинаются с изложения статики. Здесь также предполагается, что учащимися уже пройден элементарный курс, поэтому статика начинается с установления общих условий равновесия твердого тела, после чего рассматриваются веревочные и стержневые многоугольники, подробно разбирается задача о цепной линии и показывается ее аналогия с задачею о движении материальной точки. В заключение излагается начало возможных перемещений, причем дается лагранжево доказательство, существенно, однако, дополненное в том отношении, что показывается не только необходимость, но и достаточность выведенного общего условия равновесия всякой системы, причем связи рассматриваются как удерживающие, так и неудерживающие.

Динамика систем точек начинается с обстоятельного разбора тех условий, которые излагаются удерживающими и неудерживающими связями на скорости и ускорении точек системы; случай неудерживающих связей рассмотрен при этом гораздо подробнее, нежели это обычно делается. Составив уравнения движения всякой системы и объяснив начало Д'Аламбера, Александр Михайлович подробно останавливается на рассмотрении первой лагранжевой формы дифференциальных уравнений движения и доказывает в совершенно общем виде, что эти уравнения, по исключении из них проекций ускорений, пользуясь уравнениями связей, всегда разрешимы относительно лагранжевых множителей. По выяснении понятия об интегралах системы выводятся законы сохранения движения центра инерции, площадей и живой силы для свободной системы точек как в абсолютном их движении, так и в относительном по отношению к центру инерции. Как пример сперва рассматривается задача двух тел, притягивающихся по закону Ньютона, затем составляются дифференциальные уравнения движения для случая (n+1) точки и находятся их известные 10 интегралов. В заключение отдела о движении свободной системы рассматривается случай системы точек, притягивающихся или отталкивающихся пропорционально расстоянию.

Следующий отдел заключает подробное аналитическое установление необходимых и достаточных условий, при которых для несвободной системы имеют место законы движения центра инерции, площадей и живой силы, после чего дается строгое доказательство Дирихле критерия устойчивости или неустойчивости положения равновесия какой угодно системы и поясняется примером.

Далее излагается начало наименьшего действия и начала Гамильтона, на основании которого выводятся уравнения движения во второй лагранжевой форме и в каноническом виде доказываются свойства символа Пуассона и теорема Якоби.

Следующим отделом служит учение о движении неизменяемой системы. По получении общих выражений живой (Гилы и моментов количества движения для такой системы исследуются свойства моментов инерции, эллипсоида инерции и гирационного эллипсоида, после чего на основании законов движения центра инерции и уравнений моментов составляются дифференциальные уравнения движения твердого тела. Примерами такого движения служат физический маятник, вращение по инерции твердого тела, имеющего неподвижную точку, причем дается как геометрическое исследование Пуансо, так и аналитическое при помощи эллиптических функций, пользуясь лишь самыми их элементарными свойствами, тут же доказываемыми.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*