KnigaRead.com/

Лев Андреев - Янгель: Уроки и наследие

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Лев Андреев, "Янгель: Уроки и наследие" бесплатно, без регистрации.
Перейти на страницу:

Заметная разница в диаметрах отсеков первой и второй ступеней, соединенных коническим переходником, в отличие от прямолинейных сигарообразных форм предыдущих одноступенчатых ракет, придавала особую грациозность сооружению. А слегка притупленная конусообразная головная часть и обтекатели рулевых двигателей на хвостовых отсеках, гармонично вписываясь в общие контуры, довершали масштабное и величественное впечатление.

Не было равнодушных и среди присутствовавших на стартовой площадке. В непосредственной близости как-то по-особенному чувствовалась масштабность и затаенная сила стосорокатонной громадины. И в первых рядах поклонников новой стратегической ракеты находился маршал. Наблюдая за процессом подготовки ракеты, М.И. Неделин откровенно не скрывал своего восхищения ее внешним видом, законченностью пропорций цилиндро-конической формы, и чувствовалось, что он видел будущее развития этого класса оружия. По свидетельству очевидцев, обращая взгляд на пусковой стол, Главком Ракетных войск как-то непринужденно повторял:

— Красавица! Хороша и совершенна!

С момента установки ракеты на стартовый стол начался отсчет времени проведения запланированных проверок, в том числе предполетных операций. В период с 21 по 23 октября осуществлялась предусмотренная технической документацией предстартовая подготовка ракеты к пуску: автономные и комплексные испытания всех систем, в том числе стыковка головной части, подъем и установка ракеты на пусковой стол, подключение пневмокоммуникаций и наземной кабельной сети к ракете, проведение комплексных испытаний пусковой электроаппаратуры. Цель одна — проверить надежность совместной работы всех систем, участвующих в пуске ракеты.

В процессе проведенных работ не было выявлено существенных замечаний. После этого ракета 23 октября была заправлена компонентами топлива, сжатыми газами и началась подготовка ее к пуску, который решением Государственной комиссии был назначен на вечер того же дня.

Объем работ, который приходится преодолевать при проектировании, и их сложность требуют от исполнителей высокой узкопрофессиональной квалификации. Это приводит к тому, что даже в рамках одного конструкторского бюро специалисты в смежных подразделениях могут только понаслышке знать об особенностях работы узлов ракеты, к которым они не имеют непосредственного отношения. А представление о них составляют по названиям и назначению, домысливая все остальное. Поэтому, чтобы было понятно, что происходило на старте ракеты Р-16 с 18.00 23 октября до 18.45 24 октября 1960 года, необходимо сделать небольшой пропедевтический экскурс в конструктивные особенности и особенности функционирования двух систем — системы управления и пневмогидравлической системы ракеты Р-16. Именно вокруг них и развернулись основные события, приведшие к роковой развязке.

Запуск ракетного двигателя, его работа и выключение в полете, в отличие от любого другого двигателя, например автомобильного, — сложный и многостадийный процесс. Транспортировку компонентов из топливных баков в двигатель обеспечивает по командам, выдаваемым системой управления, пневмогидравлическая система (ПГС).

Маршевый двигатель первой ступени ракеты Р-16 представлял три автономных блока по две камеры в каждом, связанных единой системой запуска, включавшей пусковые бачки окислителя и горючего и систему узлов автоматики. На второй ступени маршевый двигатель состоял из одного блока — двух камер, пусковых бачков окислителя и горючего, системы запуска и автоматики.

Из топливных баков к двигателям шли раздельные магистрали горючего и окислителя. Принципиальное различие между ними заключалось в том, что по линии горючего на каждый блок предусматривалась своя отдельная труба, а по линии окислителя — общая магистраль, из которой через коллектор ("штаны") производилась разводка на три трубы в соответствии с количеством блоков. Для нормальной работы двигателя, обеспечивающей устойчивый процесс превращения энергоносителей в истекающие из сопла двигателя продукты сгорания, создающие реактивную тягу, необходимо, чтобы компоненты топлива поступали под определенным давлением. Эту роль берут на себя турбонасосные агрегаты, устанавливаемые на каждой магистрали.

В связи с тем, что на ракете применялись самовоспламеняющиеся токсичные компоненты топлива, для надежной герметизации топливных баков и подводящих трубопроводов в процессе длительного нахождения заправленной ракеты на старте и предотвращения попадания агрессивных компонентов топлива в полости насосов двигателей при входе в турбонасосные агрегаты на фланцах трубопроводов устанавливались специальные разделительные устройства — пиромембраны. При срабатывании пиропатрона мембрана раскрывалась и складывалась, тем самым открывая доступ компонентам топлива для заполнения полостей насосов двигателя.

После прохождения команды на прорыв пиромембран горючее и окислитель, каждые по своей магистрали, устремлялись вниз, заполняли полости турбонасосных агрегатов. Но при выходе из турбонасосного агрегата для дальнейшего движения компонентов возникала еще одна преграда — главные разделительные клапаны, которые перекрывали вход непосредственно в камеры сгорания. Главные клапаны автоматически открывались только тогда, когда давление на входе в них достигало определенной величины. Гидростатического давления столба жидкости для этого было недостаточно.

Процесс запуска маршевого двигателя второй ступени, поскольку именно он будет интересовать нас в дальнейшем, происходил (при прорванных пиромембранах) следующим образом. После прохождения команды на запуск двигателя срабатывал специальный электропневмоклапан (ВО-8) и в пусковые бачки с горючим и окислителем подавался газ из системы высокого давления, находившейся на борту ракеты. В результате компоненты топлива вытеснялись в газогенератор, где и происходило их соединение. Образующийся при сгорании газ поступал на турбину, на одном валу с которой были установлены насосы магистралей окислителя и горючего.

При раскрутке турбонасосного агрегата газогенератор турбины переходил на питание компонентами топлива, отбираемого после насосов окислителя и горючего. Первоначальная раскрутка ТНА производилась от порохового пиростартера при прорванных мембранах "О" и "Г" на входе в двигатель, а затем газогенератор турбины переходил на питание компонентами топлива от насосов. В процессе раскрутки турбины повышалось давление в полостях за насосами, и при достижении определенной величины открывались главные клапаны (на две камеры один клапан). Компоненты топлива устремлялись в камеры сгорания: соединяясь, они самовоспламенялись, происходил запуск двигателя и выход его на режим.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*