Илья Маршак - Александр Порфирьевич Бородин
Сторонники старого стараются приспособить свои теории к новым фактам. Но это не всегда решает вопрос.
И наступает момент, когда передовые идеи, окрепшие в борьбе, сметают, наконец, все преграды. На месте старой теории возникает новая, — словно более просторное и удобное здание, вмещающее то, чего не могло вместить прежнее.
В такие революционные времена начинал свою работу Бородин. Он сразу, еще студентом, попал в самую гущу схватки.
На лекциях Зинина, в спорах, то и дело вспыхивавших в «химическом клубе», не раз повторялись имена сторонников нового и старого направления в химии. Раздавались голоса «за» и «против». И молодому химику надо было решить, под чьи знамена встать. Под знамена Берцелиуса, который на протяжении десятилетий был чуть ли не единовластным законодателем химии? Или же примкнуть к его противникам — Лорану и Жерару, поднявшим восстание против старой теории?
Впрочем, то «новое направление», которое отстаивали Лоран и Жерар, было в действительности совсем не новым в науке.
Спор шел об основных понятиях химии — о молекулах и атомах. Но еще в середине XVIII века Ломоносов ясно представлял себе различие между «корпускулой», то есть молекулой, и «элементами», то есть атомами, ее составляющими.
В 1741 году он писал в «Элементах математической химии», что «корпускулы однородны, если состоят из одинакового числа одних и тех же элементов, соединенных одинаковым образом. Корпускулы разнородны, когда элементы их различны и соединены различным образом или в различном числе; от этого зависит бесконечное разнообразие тел».
Опережая на столетие своих современников, Ломоносов верил, что «острое исследователей око» проникнет со временем во внутреннее строение «нечувствительных частиц» — молекул.
«Ежели когда-нибудь сие таинство откроется, — писал он в «Слове о пользе химии», — то подлинно химия тому первая предводительница будет, первая откроет завесу внутреннейшего сего святилища натуры».
А в рассуждении «О твердости и жидкости тел» он говорил: «Во тьме должны обращаться физики, а особливо химики, не зная внутреннего нечувствительных частиц строения».
Ярким светом пронизывало эту тьму учение Ломоносова, указывая исследователям путь в глубь вещества. Но прошло больше ста лет, прежде чем цель была достигнута и внутреннее строение молекул стало доступным изучению.
Путь оказался таким долгим не только потому, что для дальнейшего развития химии нужно было сначала накопить большой материал, проделать множество опытов. Движение вперед было затруднено еще и тем, что химики не скоро приняли атомно-молекулярное учение во всей его полноте.
Признав существование атомов и сделав из этого важные выводы, виднейшие химики первой половины XIX века Дальтон и Берцелиус попытались обойтись без понятия о молекуле.
Они, например, говорили не о молекуле воды, а об ее «сложном атоме», не видя глубокого различия между атомом и молекулой. Они считали, что простые тела состоят не из молекул, а из свободных атомов, и это было ошибкой, которая дорого стоила химии.
Основатель научной химии — Ломоносов, многогранный и глубокий мыслитель, умел охватывать взором всю природу как единое целое. Он понимал, что нельзя отрывать химию от физики, исследование атомов от исследования молекул.
У Дальтона и Берцелиуса не было такого широкого кругозора. Они видели перед собой только одну химическую сторону явлений. Они старались все явления объяснить с помощью одних и тех же атомов, не понимая, что «сложные атомы» — это уже не атомы, а молекулы, то есть другая ступень развития материи, подчиняющаяся своим законам.
Но и в таком половинчатом виде атомное учение много дало химии. Из него были выведены и подтверждены опытом важные следствия: закон постоянства состава, закон кратных отношений. Химики обозначили особыми знаками атом каждого элемента и стали изображать химические соединения в виде формул.
Появилось и представление об относительном весе атомов. Но эти первые атомные веса и первые формулы были еще очень произвольны.
Дальтон, например, считал, что в «сложном атоме» воды — один атом кислорода и один атом водорода. При этом атомный вес водорода принимался равным единице, а атомный вес кислорода равным восьми. Основанием для выбора формулы служил химический
анализ, который показывал, что в воде на одну весовую часть водорода приходится восемь весовых частей кислорода. Но тем же результатам анализа не противоречила бы и формула Н20, если принять атомный вес кислорода равным 16, и формула Н40, если считать атомный вес кислорода равным 32.
Почему же из множества возможных формул Дальтон выбрал формулу НО?
Он сделал это, основываясь не на опыте, а на произвольном умозрительном допущении, что в природе все должно быть устроено просто.
К произвольным допущениям прибегал при выборе формул и Берцелиус.
В условии задачи не хватало данных, и их приходилось выдумывать.
Химический анализ давал только весовые отношения, в которых соединены элементы. Чтобы решить задачу об атомном составе вещества, об его истинной формуле, этого было недостаточно.
Тут на помощь химии могла бы прийти физика, — ведь она тоже со своей стороны искала пути в мир атомов и молекул.
Никто и никогда еще не видал молекулы и атома, и даже существование их многим казалось в те времена спорным. Но если нельзя было увидеть, выловить отдельный атом или отдельную молекулу, то об их множестве уже можно было судить, как можно судить издали о толпе, не различая отдельных людей.
Было уже известно, что «толпа» молекул водорода или «толпа» молекул любого другого газа ведет себя совершенно одинаково, хотя молекулы сами по себе различны. От сжатия или нагревания эти «толпы» одинаково сжимаются или расширяются. Это можно было объяснить только тем, что молекулы в разных газах или парах одинаково отстоят одна от другой.
Но раз от молекулы до молекулы всегда при одних и тех же условиях одно и то же расстояние, значит в одинаковых объемах помещается одинаковое число молекул любого газа или пара.
Такой вывод и сделал итальянский физик Авогадро.
А если так, то, взвесив равные объемы двух разных газов, можно было узнать, во сколько раз молекула одного из них весит больше, чем молекула другого.
Но закон Авогадро давал не только это.
Хотя молекулы и атомы оставались по-прежнему «нечувствительными» — недоступными глазу, химик мог теперь судить о том, что происходит с этими невидимками, когда они соединяются во время химических реакций.
Вот объем водорода и такой же объем хлора. Соединяясь, они дают два объема хлористого водорода. С помощью закона Авогадро результат этого опыта можно было перевести с языка объемов на язык молекул: молекула водорода и молекула хлора образовали две молекулы хлористого водорода. Но для этого они должны были сначала раздвоиться, распасться пополам на составляющие их атомы.