KnigaRead.com/

Тяпкин А.,Шибанов А. - Пуанкаре

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Тяпкин А., "Пуанкаре" бесплатно, без регистрации.
Перейти на страницу:

Наибольшего успеха в этих теоретических исследованиях добиваются лорд Рэлей и Пуанкаре. Они рассматривают явление с общих позиций теории Максвелла, отводя основную роль изменению электромагнитного поля и влиянию на него проводников и заряженных диэлектриков. Это был совершенно новый подход для электротехников того времени, привыкших иметь дело лишь с расчетами разности потенциалов и силы тока в замкнутых электрических цепях с определенными сопротивлениями, индуктивностями и емкостями. Кирхгоф, один из основателей этой теории электрических цепей, применив старый проверенный метод и даже не принимая во внимание электромагнитное поле вокруг проводника, получил "телеграфное уравнение", описывающее распространение электромагнитных колебаний вдоль линии. Пуанкаре тоже вывел "телеграфное уравнение", но уже с чисто максвелловской точки зрения, имея дело с электромагнитными волнами вне проводника. Но его более строгий и более глубокий метод не выдержал конкуренции с методом Кирхгофа, хотя на основании этого метода лорд Рэлей еще до 1900 года предсказал техническое использование волноводов. Инженеры-электротехники предпочли более простой и более привычный им подход теории электрических цепей, отказавшись от всех богатств более тонкой, но более сложной теории. Они уподобились тому эфору из древней Спарты, который сорвал с музыкального инструмента две дополнительно введенные струны. Ему было неважно, что инструмент усовершенствован и дает новые аккорды. Он жаждал вернуться к привычному.

К тому же радиотехника вскоре облюбовала длинные волны, для которых классическая теория XIX века давала весьма удовлетворительную картину явлений, происходящих в приемниках и передатчиках, и представляла все результаты в знакомой и наглядной форме. Даже для расчета антенн и фидеров старая теория была вполне приемлемой. Почти тридцать лет все монографии и учебные пособия пропагандировали исключительно теорию электрических цепей, теорию прошлого века. Несколько поколений инженеров воспитывались на этих классических методах, не зная более строгих и точных. Лишь с развитием техники сверхвысоких частот, имевшей дело с дециметровыми и миллиметровыми волнами, проявилась несостоятельность широко применяемых теоретических средств. Только тогда обратились к уравнениям электромагнитного поля и к более сложным математическим методам. Пуанкаре смотрел слишком далеко вперед, его теория намного опережала происходящие события. В этом была ее сила, в этом была и ее слабость.

Еще одна его математическая формула завтрашнего дня была получена в исследованиях дифракции радиоволн проводящей сферой. Пуанкаре пытался объяснить явление распространения радиосигналов на большие расстояния. В мемуаре 1909 года он выводит основную формулу теории распространения радиоволн, устанавливающую закон угасания сигнала по мере удаления от источника колебаний. Математический метод, с помощью которого автор пришел к этому результату, вызвал оживленный обмен мнениями на страницах различных научных журналов того времени. Но только в середине XX века формула Пуанкаре для амплитуды дифрагированной волны была окончательно подтверждена исследованиями Ватсона.

Некоторые свои статьи Пуанкаре посвящает вопросу об униполярной индукции, вызвавшей в то время нескончаемые споры, методам расчета периода вибратора, истолкованию явления множественного резонанса, казавшегося весьма парадоксальным. В 1910 году он занимается разработкой способа передачи сигналов времени на корабли, находящиеся в открытом море. Это позволило бы отказаться от дорогих и сложных в эксплуатации хронометров. Вклад его в новую отрасль техники заслуженно оценен современниками. Французское правительство доверило ему председательство в межведомственной комиссии, которая должна была координировать применение беспроволочной телеграфии.

Аппель, знавший своего знаменитого друга с юношеских лет, утверждал, что Пуанкаре достиг бы высоких успехов в любой области человеческой деятельности, которую бы он избрал. Ему вторит Дарбу. Французский математик Адамар считает такой универсализм проявлением некоторой общей закономерности. "Более чем сомнительно, что существует единственная ярко выраженная "математическая способность", — пишет он. — Математическое творчество и математический ум не могут быть безотносительны к творчеству вообще и к уму вообще. Редко бывает, чтобы первый математик в лицее был последним в других науках. И, рассматривая вещи на более высоком уровне, отметим, что большая часть великих математиков творила и в других областях науки".

Пуанкаре мог бы быть историком, философом, романистом, географом, а может быть, и натуралистом. Он предпочел стать математиком, механиком, физиком, астрономом; предпочел разрабатывать фуксовы функции и качественные методы дифференциальных уравнений, исследовать фигуры равновесия вращающейся жидкости и движение небесных тел, создавать топологию и теорию относительности, обосновывать принцип Дирихле и развивать теорию морских приливов, принимать участие в геодезических исследованиях и творить в области беспроволочной телеграфии. Могло бы показаться, что он безвольно предается всем влечениям своего ума, наслаждаясь непостоянством предмета своих ученых занятий. Могло бы, если не принимать во внимание глубину разработки проблем и фундаментальность достигнутых результатов, если позабыть о нечеловеческом, напряженнейшем труде, ежедневном, ежечасном, ежеминутном.

Говоря о недостатках всякой специализации, русский физик В. Лебединский, современник Пуанкаре, сравнивает узкого специалиста с провинциалом, который, прекрасно зная условия своего округа, все же ошибается в своих решениях именно потому, что руководствуется чересчур местными взглядами. Не может исправить его огрехи и житель столицы, сравнивающийся Лебединским с человеком, обладающим энциклопедическими сведениями. Антитезою провинциала, по его мнению, "является такой деятель, который в каждой провинции провинциал; и то, что он думает относительно данного округа, будет находиться в согласии с потребностями всей страны". Считая, что в некоторых областях человеческой деятельности такая роль под силу только целому коллективу, Лебединский восклицает: "Но в науке только что было такое чудо; этот коллектив для физико-математических знаний был в одном ее представителе — Пуанкаре".

Трещат по швам и разваливаются все утверждения другого современника Пуанкаре, немецкого ученого В. Оствальда. Большой популярностью пользовалась его идея о том, что гений однократен в своем проявлении, словно единожды заведенная часовая пружина. Великий творец науки, по его мнению, способен только на один большой взлет, в результате которого он создает нечто принципиально новое. Это вписывает его имя в историю науки, но и обессиливает, истощает его, делает неспособным на повторение такого взлета. "После этого ученый не только утрачивает лидерство в науке, — считает Оствальд, — но и перестает успевать за ее ростом". Правило это действительно хорошо подтверждается многими конкретными примерами. Но оно споткнулось бы на примере Пуанкаре, если бы Оствальд вздумал принять во внимание своего современника. Сколько было у него неповторимых творческих взлетов, каждый из которых мог бы навеки прославить его имя! И после этого оп умудряется не только не отставать от развития современной ему научной мысли, но порой опережает ее на целые десятилетия. И сразу во многих направлениях.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*