Калоян Манолов - Великие химики. В 2-х томах. Т. I.
Статья, которую он послал в Париж, вызвала большой интерес. Результаты Девилля полностью опровергали взгляды Жераpa, чему очень обрадовался Дюма, давно ведший острую полемику с Жераром. Дюма немедленно собрал ученый совет Сорбонны. В зале присутствовали все выдающиеся ученые Франции. С докладом об ангидриде азотной кислоты выступил Сент-Клер Девилль. На столе перед ним лежало несколько запаянных стеклянных ампул, заполненных кристаллами ангидрида. Аудитория наградила его долгими овациями…
Исключительная тщательность исследований и широкие познания снискали Девиллю симпатии парижских ученых, и по предложению Дюма в 1851 году он занял место профессора Балара[450] в Высшей педагогической школе Парижа. Лаборатории здесь были просторными, но в них недоставало аппаратуры, отсутствовала и научная библиотека. Это не смутило Девилля, хотя суммы в 1800 франков в год явно не хватало для покрытия расходов по оборудованию лаборатории. Все же Девилль не приостановил исследовательскую работу.
Теперь он снова имел возможность встречаться в Париже с Шарлем. Братья обменивались мыслями, советовались по многим проблемам.
Исследования процессов минералообразования требовали проведения опытов при высоких температурах, и Анри решил помочь брату. Вот почему прежде всего в лаборатории Высшей педагогической школы занялись конструированием и усовершенствованием высокотемпературных печей. Для достижения высокой температуры Девилль добавлял в воздух для горения некоторое количество кислорода. Этот прием дал отличные результаты: в печи легко достигалась очень высокая температура. Даже плавление такого тугоплавкого вещества, как фарфор, не представляло затруднений. Особенно высокую температуру получали, когда в качестве топлива использовали светильный газ, смешанный с кислородом. Пламя этой смеси ослепительно светилось, и даже платина, один из самых тугоплавких металлов, легко плавилась в нем.
Обычные тигли, в которых до сих пор проводили подобные плавки, не выдерживали таких высоких температур: они размягчались и разрушались. Пришлось искать новый, более огнеупорный материал. Девилль нашел выход и из этого положения. Он решил изготовлять тигли из чистой окиси кальция или магния. Температура плавления этих веществ очень высока: при нагревании до 2000° и даже до 3000°С они лишь раскаляются и начинают светиться, но не обнаруживают никаких признаков размягчения. Минералогические исследования Шарля получили новые возможности, но работа при высоких температурах породила новые идеи и у самого Анри Девилля. Наряду с усовершенствованием печей он стал работать над осуществлением некоторых идей, возникших еще во время аналитических исследований в Безансоне. Теперь внимание исследователя привлекло большое сходство свойств алюминия и трехвалентного железа.
«Если их свойства так близки, должны существовать и соединения двухвалентного алюминия, ведь соединения двухвалентного железа известны и хорошо изучены», — думал ученый.
Мысль о получении соединений двухвалентного алюминия не давала ему покоя. Он подробно изучил литературу по этому вопросу и познакомился с методом Вёлера: последнему удалось получить серый порошок, а потом и мелкие зернышки этого нового недостаточно изученного металла.
— Может быть, при подходящих условиях восстановления именно метод Вёлера дает возможность получить соединения двухвалентного алюминия?
Металлический калий был уже сравнительно дешев, и проведение реакции не представляло таких трудностей, как это было во времена Вёлера. Девилль имел возможность осуществить реакцию в сравнительно большом масштабе. Для этой цели он использовал широкую платиновую трубку, которую загрузил металлическим калием. Один конец трубки он соединил с фарфоровым сосудом, в котором хлорид алюминия нагревался до высокой температуры. Пары хлорида алюминия вступали в реакцию с калием, который восстанавливал их до металлического алюминия. Благодаря усовершенствованным печам выпаривание хлорида алюминия осуществлялось легко. В этом случае в пламя не приходилось вдувать кислород, так как уже при 500° вещество начинало испаряться.
Девилль подробно исследовал продукт реакции, пытаясь найти соединения двухвалентного алюминия, но все его усилия не привели к желаемому результату. В платиновой трубке он открыл лишь два металла — образовавшийся алюминий и непрореагировавший калий. Мелкие серебристо-белые частицы алюминия обладали хорошей ковкостью и не теряли блеска на воздухе.
— По всему видно, что новый металл приближается по свойствам к благородным металлам. Единственная разница в их удельных весах: алюминий чрезвычайно легок, — оказал Девилль, обращаясь к Дюма. — Думаю, что его получение должно заинтересовать наше правительство.
— Если алюминий оправдает наши ожидания, страна, в которой будет много этого металла, станет могучей державой. Продолжайте свои опыты. Думаю, что ваша лаборатория имеет все возможности для этого.
— Не могу жаловаться. Лаборатория в Высшей педагогической школе оборудована мною и… впрочем, вы все знаете. Единственно, чего мне недостает, — денег.
— Средства мы найдем в Академии наук. Я доложу лично императору.
— Может быть, будет лучше, если мы удовлетворимся только средствами Академии? — сказал Девилль. — Не стоит торопиться.
— Надо торопиться, профессор Девилль! Какие перспективы открываются перед Францией!
— Не только перед Францией — перед всем человечеством, профессор Дюма. Ведь сырье для получения алюминия есть повсюду: это глина.
Девилль называл алюминиевую руду глиной. Он, однако, применял не обычную глину, а пользовался совершенно чистой, белой породой, которую добывали в окрестностях города Бо. Сегодня такая глина называется бокситом и по-прежнему является самым важным и почти незаменимым сырьем в производстве алюминия.
Эту глину подвергали очистке, чтобы удалить примеси железа, а потом смешивали получавшуюся окись алюминия с углем и смесь нагревали в среде хлора. Образовавшийся хлорид алюминия загружали в железную трубу, заполненную керамическими сосудами, каждый из которых вмещал по полкилограмма натрия. Когда реакция заканчивалась, железную трубу нагревали до более высокой температуры, частицы образовавшегося алюминия расплавлялись и образовывали мелкие зернышки. После охлаждения железной трубы извлекали керамические сосуды и тщательно собирали зернышки полученного металла. Когда их набиралось достаточно много, ими загружали керамический сосуд и вновь нагревали до высокой температуры, чтобы расплавить эти зерна и получить большой слиток металла. Однако операции эти были очень сложными, а их применение в большом масштабе невыгодно.