KnigaRead.com/
KnigaRead.com » Документальные книги » Биографии и Мемуары » Валерий Августинович - Битва за скорость. Великая война авиамоторов

Валерий Августинович - Битва за скорость. Великая война авиамоторов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Валерий Августинович, "Битва за скорость. Великая война авиамоторов" бесплатно, без регистрации.
Перейти на страницу:

А вот военное и космическое применение гиперзвука совершенно реально и здесь впереди всех, по крайней мере, по продуманности стратегии, находятся США. Более того, НАСА и Военное ведомство США создали совместную организационную структуру, получившую название «Национальная Аэрокосмическая Инициатива» (НАИ), для практической реализации следующего поколения проектов. Намучившись с «челноками» в части прогноза их надежности при многократном применении, НАСА поставило задачу радикального снижения затрат на запуски космических кораблей с помощью разработки носителей нового поколения с применением гиперзвукового самолета. Этот проект аэрокосмического самолета, получивший обозначение Х-43 (как и всякий опытный самолет, имеющий индекс «X»), по плану должен быть закончен к 2025 г. летными испытаниями демонстратора. Правда, окончательный выбор типа первой ступени еще не сделан. Рассматриваются оба варианта: чисто ракетный и на базе газотурбинного двигателя. Но «верхняя» часть первой ступени является гиперзвуковым прямоточным воздушно-реактивным двигателем со сверхзвуковым горением.

Вообще, естественная трансформация оптимального двигателя космического корабля выглядит следующим образом. При старте, когда начальная скорость полета в атмосфере равна нулю, необходимое для производства работы сжатие воздуха осуществляет компрессор газотурбинного двигателя. С увеличением скорости полета все большая часть сжатия происходит при торможении воздуха в воздухозаборнике и все меньшая — в компрессоре. Начиная с числа М полета, равного 3–3,5, компрессор, по сути, вырождается, практически ничего не добавляя к степени сжатия в воздухозаборнике. Здесь газотурбинную часть двигателя целесообразно выключать и переходить на чисто прямоточный контур с дозвуковым горением до скоростей полета порядка М=5. Следующей оптимальной модификацией двигателя является прямоточный двигатель со сверхзвуковым горением (при М4 температура торможения при обтекании стабилизатора достигает величины воспламенения, и возникает устойчивое горение при высокой, в том числе и сверхзвуковой скорости). И, наконец, при выходе за пределы атмосферы, где воздух имеет малую плотность и не может служить рабочим телом, применяется жидкостно-ракетный двигатель, который использует вместо атмосферного воздуха собственный запас окислителя в баке ракеты или самолета. Необходимое давление в камере сгорания при этом обеспечивается расходом рабочего тела, который, в свою очередь, дают насосы, качающие окислитель и горючее в необходимом количестве.

Если газотурбинные технологии до числа М полета, равного 3, хорошо отработаны, то область работы прямоточного двигателя со сверхзвуковым горением (М4) является проблемной как в научном, так и в практическом плане. И в этом направлении ведутся интенсивные исследования. Кроме того, представляется заманчивым продлить область применения газотурбинного двигателя (пусть и в комбинированном варианте с прямоточным) до М=4. Тогда в космическом корабле силовая установка для его разгона будет иметь три отдельных модуля: турбопрямоточный, прямоточный со сверхзвуковым горением и ракетный двигатели.

В США принята соответствующая программа разработки так называемого «Революционного Турбинного Ускорителя» (РТУ или, в английской транскрипции, RTA), в которой участвует знаменитая фирма «Дженерал Электрик». В качестве прототипа такого «революционного» двигателя используется F-120, так называемый «двигатель изменяемого цикла» с механически регулируемыми площадями проходных сечений (в частности, соплового аппарата турбины).

Проблем создания гиперзвукового самолета много. Начиная от недостаточной точности прогноза внешнего сопротивления такого аппарата, а следовательно, и оценки потребной величины тяги силовой установки. Дело в том, что при таких гиперзвуковых скоростях надежность геометрического моделирования при аэродинамических продувках еще требует подтверждения. Неясно, работает ли (скорее всего, не работает) в этом случае теория подобия, столь успешно применяемая при исследовании моделей дозвуковых и сверхзвуковых (но не гиперзвуковых) самолетов. Современные методы расчета и моделирования аэродинамики тоже нуждаются в верификации. Взаимодействие гиперзвукового потока с двигателем и самолетом порождает существенно нелинейные эффекты, которые современные сеточные методы математического моделирования точно описать не могут. Все идет к тому, что доводка таких дорогих систем должна во многом вестись на натуре в летных условиях. Здесь мы находимся в ситуации, аналогичной начальной стадии разработки крупных ракетных двигателей.

Прямоточный контур двигателя со сверхзвуковым горением тоже требует исследований, начиная от разработки новых более легких теплопроводных материалов типа гамма-титан-алюминий или керамических композитов на основе кремния и выбора типа топлива. Нужно иметь в виду, что топливо используется здесь для охлаждения камеры сгорания. И т. д, и т. п.

Какова же ситуация с гиперзвуком в России? И каково здесь возможное применение гиперзвуковых самолетов? Вряд ли следует ожидать применения гиперзвука для вывода на орбиту космических аппаратов и кораблей. В России для этой цели уже давно сложилась надежная система применения ракетных носителей. Не будет в России и гиперзвукового воздушного транспорта — нет такой потребности, да и с экономической точки зрения это нецелесообразно. А вот в области военного применения гиперзвука существуют заманчивые перспективы Надо отметить, что этой темой в России занимаются давно (с 1970-х гг.) в Центральном институте авиационного моторостроения в рамках федеральных целевых программ («Холод» по использованию водорода и др.). Эта тема не только предоставляет прекрасные возможности для развития фундаментальной науки, прежде всего в области механики жидкости и газа, а также физики горения, но и имеет очевидный прикладной характер. Разработка новых математических моделей процессов, проведение уникальных экспериментов — все это само по себе имеет большую ценность для инновационного развития страны. В случае же создания гиперзвукового носителя оружия оборона страны получает новое качество благодаря повышению скорости реакции и неуязвимости ответа на возможные угрозы.

В ЦИАМ темой ГПВРД (гиперзвуковой прямоточный воздушно-реактивный двигатель) предметно начали заниматься с 1985 г. (отдел 012, начальник отдела А. С. Рудаков), ориентируясь на создание воздушно-космического самолета. Концепция такого самолета была разработана в ОКБ Туполева, а будущий проект самолета получил обозначение Ту-2000. Но организовать системную работу по созданию такого самолета не удалось по многим причинам, в том числе и из-за отсутствия целевого финансирования. Как известно, начиналась «перестройка», и эта «перестройка» «прошлась Мамаем» по многим проектам. Тем не менее в программе «Холод» было запланировано проведение летного эксперимента ГПВРД, получившего обозначение С-57. Эта работа носила комплексный характер: нужно было подготовить гиперзвуковую летающую лабораторию на базе зенитной ракеты С-200, разработать стартово-пусковой комплекс, создать сам ГПВРД и систему регулирования подачи топлива, бортовую систему хранения и подачи жидкого водорода, заправочный и транспортный комплекс жидкого водорода и т. д.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*