Рэймонд Смаллиан - Как же называется эта книга
Второй случай: A - лжец. Тогда B и C не однотипны. Если C - рыцарь, то B - лжец и, следовательно, однотипен с A. Поэтому C, будучи рыцарем, должен ответить "да". Если C - лжец, то B, будучи человеком иного типа, чем C, - рыцарь и принадлежит к иному типу островитян, чем A. Но тогда C, будучи лжецом и утверждая, что A и C не однотипны, должен лгать, поэтому на заданный вопрос он ответит "да".
Таким образом, в обоих случаях C ответит "да".
36. Решить эту задачу вам поможет информация, приведенная в условиях задачи после сообщения о том, что островитянин дал ответ на мой вопрос: мое замечание о том, что после его ответа я узнал истинный ответ на свой вопрос.
Предположим, что островитянин, с которым я разговаривал (обозначим его A), ответил на мой вопрос "да". Мог бы я после такого ответа знать, что по крайней мере один из встретившихся мне островитян рыцарь? Разумеется, нет.
Действительно, A мог оказаться рыцарем и на мой вопрос правдиво ответить "да" (его ответ соответствовал бы истине, поскольку по крайней мере один островитянин, а именно A - рыцарь). Оба островитянина могли оказаться лжецами. В этом случае A, солгав, ответил бы на мой вопрос "да" (что было бы ложью, так как ни один из островитян не был рыцарем). Таким образом, получив от A ответ "да", я не смог бы узнать истинный ответ на свой вопрос. Но, как говорится в условиях задачи, после ответа A мне стал известен правильный ответ на заданный мною вопрос.
Следовательно, A мог ответить только "нет".
Разберемся теперь, кто такие островитянин A и его приятель, которого мы обозначим B. Если бы A был рыцарем, то он не мог бы дать правдивый ответ "нет", поэтому A - лжец.
Так как его отрицательный ответ ложен, то по крайней мере один из двух островитян должен быть рыцарем. Следовательно, A - лжец, а B - рыцарь.
37. Должны. Если оба встретившихся вам островитянина рыцари, то они оба ответят "да". Если они оба лжецы, то они также оба ответят "да". Если же один из них рыцарь, а другой лжец, то рыцарь ответит "нет" и лжец также ответит "нет".
38. Должен признаться, что в этой задаче я позволил себе подшутить над читателем. Ключом к решению служит та фраза, в которой говорится, что вам, сколько вы ни бились, так и не удалось "извлечь его из тины". Слова, заключенные в кавычки, представляют собой каламбур - "извлечь его истины". Из них следует, что встретившийся вам островитянин изрекал только ложь, то есть был лжецом.
Отсюда мы заключаем, что его звали Эдвин.
39. Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвал бы себя нормальным человеком.
Следовательно, A - либо лжец, либо нормальный человек.
Тогда истинно высказывание островитянина B. Значит, B - либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A - нормальный человек), поэтому B - рыцарь, а C - лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком.
Следовательно, A - лжец. Это означает, что высказывание островитянина B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец - островитянин A). Итак, A - лжец, а B нормальный человек. Отсюда мы заключаем, что C - рыцарь.
40. Эта задача обладает интересной особенностью. Условия ее не позволяют установить, кто из двух островитян говорит правду, не будучи рыцарем: A или B. Мы можем доказать более слабое утверждение: по крайней мере один из двух островитян A и B говорит правду, не будучи рыцарем.
Островитянин A либо говорит правду, либо не говорит правду.
Докажем два утверждения: 1) если A говорит правду, то он говорит правду, не будучи рыцарем; 2) если A лжет, то B говорит правду, не будучи рыцарем.
1) Предположим, что A говорит правду. Тогда B - рыцарь и, следовательно, говорит правду. Значит, A - не рыцарь.
Таким образом, если A говорит правду, то A - лицо, говорящее правду, не будучи рыцарем.
2) Предположим, что A не говорит правду. Тогда B - не рыцарь. Но B должен говорить правду, так как A не может быть рыцарем (ведь A не говорит правду). Следовательно, в этом случае B говорит правду, не будучи рыцарем.
41. Докажем, что если B говорит правду, не будучи рыцарем, и если B не говорит правду, то A лжет, не будучи лжецом.
1) Предположим, что B говорит правду. Тогда A - лжец и, следовательно, заведомо не говорит правду. Отсюда мы заключаем, что B не рыцарь. Таким образом, в этом случае B говорит правду, не будучи рыцарем.
2) Предположим, что B не говорит правду. Тогда A не лжет.
Но A заведомо лжет, когда говорит о B, так как B не может быть рыцарем, если он не говорит правду. Таким образом, в этом случае A лжет, не будучи лжецом.
42. Прежде всего заметим, что A не может быть рыцарем, так как если бы A был рыцарем, то его высказывание было бы ложным (рыцарь как особа высшего ранга не может быть по рангу ниже B). Предположим, что A - лжец. Тогда его высказывание ложно. Следовательно, A по рангу не может быть ниже, чем B. Значит, B также должен быть лжецом (так как если бы B не был лжецом, то A был бы особой более высокого ранга, чем B). Но это невозможно, так как высказывание B противоположно высказыванию A, а два противоположных высказывания не могут быть истинными одновременно. Следовательно, предположение, что A - лжец, приводит к противоречию. Значит, A не лжец, но тогда A должен быть нормальным человеком.
А что можно сказать о B? Если бы он был рыцарем, то A (будучи нормальным человеком) был бы особой более низкого ранга, чем B. Тогда высказывание A было бы истинным, из чего следовало бы, что высказывание B ложно. Таким образом, рыцарь высказал бы ложное утверждение, что невозможно.
Значит, B не рыцарь. Предположим, что B был бы лжецом.
Тогда высказывание A было бы ложным, из чего следовало бы, что высказывание B истинно. Таким образом, лжец высказал бы истинное утверждение, что невозможно. Следовательно, B не может быть не только рыцарем, но и лжецом. Значит, B - нормальный человек.
Итак, A и B - нормальные люди. Высказывание A ложно, высказывание B истинно. Тем самым задача полностью решена.
43. Первый шаг. Прежде всего докажем, что в силу высказывания A островитянин C не может быть нормальным человеком. Действительно, если A - рыцарь, то B - особа более высокого ранга, чем C. Следовательно, B должен быть нормальным человеком, а C - лжецом. Таким образом, в этом случае C - не нормальный человек. Предположим, что A - лжец. Тогда B по рангу не выше C. Следовательно, B - особа более низкого ранга, поэтому B должен быть нормальным человеком, а C - рыцарем. Таким образом, и в этом случае C - не нормальный человек. Предположим, наконец, что A - нормальный человек. Тогда C - заведомо не нормальный человек (так как из трех островитян A, B и C только один - нормальный человек). Итак, C - не нормальный человек.
Второй шаг. При аналогичных рассуждениях из высказывания B можно вывести, что A - не нормальный человек. Таким образом, ни A, ни C не нормальны. Следовательно, B - нормальный человек.
Третий шаг. Поскольку C - не нормальный человек, то он может быть рыцарем или лжецом. Предположим, что он рыцарь.
Тогда A - лжец (так как B - нормальный человек).
Следовательно, B - особа более высокого ранга, чем A, и C, будучи рыцарем, даст правдивый ответ: "В по рангу выше A". С другой стороны предположим, что C - лжец. Тогда A должен быть рыцарем, поэтому B по рангу не выше A. В этом случае C, будучи лжецом, солгал бы и ответил так: "В по рангу выше A". Таким образом, независимо от того, кто такой островитянин C - рыцарь или лжец, он ответит, что B по рангу выше A.
44. Мистер A не может быть лжецом, так как тогда его жена была бы рыцарем и, следовательно, не могла бы быть нормальным человеком, а это означало бы, что высказывание мистера A было бы истинно. По аналогичной причине миссис A не может быть и лжецом. Следовательно, ни мистер A, ни миссис A не могут быть и рыцарями (в противном случае второй супруг был бы лжецом). Значит, мистер A и миссис A - нормальные люди (и оба лгут).
45. Совпадает. Почему?
46. Оказывается, что все четверо - нормальные люди, а все три высказывания ложны.
Прежде всего заметим, что миссис B должна быть нормальным человеком, так как если бы она была рыцарем, то ее муж был бы лжецом и, назвав его рыцарем, она солгала бы. Если бы миссис B была лжецом, то ее муж был бы рыцарем, но Тогда ее высказывание о своем муже было бы истинным. Следовательно, миссис B - нормальный человек, тогда мистер B также нормальный человек. Это означает, что мистер A и миссис A оба лгали. Отсюда мы заключаем, что ни один из супругов A не рыцарь и что они не могут быть и лжецами. Следовательно, супруги A - нормальные люди.
IV. Алиса в Лесу Забывчивости
А. ЛЕВ И ЕДИНОРОГ
Когда Алиса вошла в Лес Забывчивости, она забыла не все, а лишь кое-что. Она часто забывала, как ее зовут, но особенно ей легко удавалось забывать дни недели. Лев и Единорог частенько наведывались в Лес Забывчивости. Странные это были существа. Лев лгал по понедельникам, вторникам и средам и говорил правду во все остальные дни недели.