KnigaRead.com/
KnigaRead.com » Детская литература » Прочая детская литература » Яков Перельман - Веселые задачи. Две сотни головоломок

Яков Перельман - Веселые задачи. Две сотни головоломок

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Перельман, "Веселые задачи. Две сотни головоломок" бесплатно, без регистрации.
Перейти на страницу:

45. Пришлось сделать 6 следующих переправ:

1-я переправа. Оба мальчика подъезжают к противоположному берегу, и один из них привозит лодку к разведчикам (другой остается на том берегу).

2-я переправа. Мальчик, привезший лодку, остается на этом берегу, а в челнок садится первый солдат, который и переправляется на другой берег. Челнок возвращается с другим мальчиком.

3-я переправа. Оба мальчика переправляются через реку, один из них возвращается с челноком.

4-я переправа. Второй солдат переправляется на противоположный берег. Челнок возвращается с мальчиком.

5-я переправа — повторение 3-й.

6-я переправа. Третий солдат переправляется на противоположный берег. Челнок возвращается с мальчиком, и дети продолжают прерванное катание по реке. Теперь все три солдата находятся на другом берегу.

46. Нелепый результат, который мы получили, исчисляя своих предков, объясняется тем, что нами упущено из виду одно весьма простое обстоятельство. Мы не приняли в расчет, что наши отдаленные предки могут быть и в кровном родстве между собой и, следовательно, иметь общих предков. Мой отец и моя мать, может, уже в 5-м или 6-м поколении назад имели общего деда, который, возможно, был и вашим предком, читатель. Это соображение разбивает все наши расчеты и уменьшает несметные полчища наших отдаленных предков до весьма скромной цифры, при которой не может быть и речи о тесноте.

47. Младший брат, пойдя назад по движению, увидел идущий навстречу вагон и вскочил в него. Когда этот вагон дошел до места, где ожидал старший брат, последний вскочил в него. Немного спустя тот же вагон догнал идущего впереди среднего брата и принял его. Все три брата очутились в одном и том же вагоне – и, конечно, приехали домой одновременно.

Однако благоразумнее всего поступил старший брат: спокойно ожидая на одном месте, он устал меньше других.

Рис. 43. Куда девался исчезнувший гость?

48. Исчезнувший гость – это второй гость, который был незаметно пропущен при распределении стульев: после 1-го и 11-го гостя мы сразу перешли к 3-му и следующим, миновав 2-го. Оттого-то нам и удалось разместить 11 гостей на 10 стульях, по одному человеку на каждом.

49. Задача сводится в сущности к тому, чтобы разделить 10 кг масла на две равные по весу части. Положите на каждую чашку по бумажному листу и накладывайте на них масло до тех пор, пока 10 кг не распределятся поровну между ними. Ясно, что теперь на каждой чашке ровно 5 кг – если только весы правильны.

Рис. 44. Как разделить поровну 10 кг масла на правильных весах?

50. И на неверных весах можно достичь того же, но более сложным путем. Сначала надо разделить десять килограммов масла на две части так, чтобы они были приблизительно (на глаз) равны. Затем берут одну из этих частей, кладут на чашку весов; на другую же чашку накладывают камешков или чего угодно до тех пор, пока чашки не будут уравновешены. Тогда снимают с чашки первую часть масла и вместо нее кладут вторую. Если окажется при этом, что чашки весов остаются на прежнем месте, то, значит, обе части масла равны, так как заменяют одна другую по весу. В таком случае, разумеется, каждая из них весит ровно 5 кг.

Рис. 45.

Если же чашки не будут на одном уровне, то надо от одного куска переложить немного масла на другой и повторять это до тех пор, пока обе порции не будут вполне заменять друг друга на одной и той же чашке весов. Подобным же образом можно действовать и при неверных пружинных весах: перекладывать масло из одного пакета в другой до тех пор, пока оба пакета не будут оттягивать указатель весов до одной и той же черты (хотя эта черта, может, и не стояла против 5 кг).

Искусное разрезание и сшивание

Семь раз отмерь – один раз отрежь

51. Флаг морских разбойников

Вы видите здесь флаг морских разбойников (рис. 46). Двенадцать продольных полос на нем обозначают, что в плену у пиратов находятся 12 человек. Когда удается захватить новых пленных, пираты подшивают к флагу соответствующее число новых полос. Напротив, при утрате каждого пленного они убирают одну полосу.

Рис. 46. Пиратский флаг.

На этот раз пираты потеряли двух пленных и, следовательно, должны перешить флаг так, чтобы полос было не 12, а 10.

Можете ли вы указать простой способ разрезать флаг на две такие части, чтобы после сшивания их получился флаг с 10 полосами? При этом не должно пропасть ни клочка материи и флаг должен сохранить прямоугольную форму.

52. Красный крест

У сестры милосердия имелся квадратный кусок красной материи, из которого нужно было сшить крест (рис. 47). Она хотела так перешить квадрат, чтобы использовать всю материю. После долгих поисков ей удалось разрезать квадрат на 4 куска, из которых она и сшила крест. В нем было всего два шва, каждый в виде прямой линии. Попробуйте сделать то же самое из квадратного куска бумаги.

Рис. 47. Красный крест из красного квадрата.

53. Из лоскутков

У другой сестры милосердия были такие обрезки красной материи, какие изображены на рис. 48.

Рис. 48. Красный крест из лоскутьев.

Сестра ухитрилась, не разрезав этих лоскутьев, сшить из них крест. Каким образом?

54. Два креста из одного

У третьей сестры милосердия имелся готовый красный крест из материи, но он был чересчур велик, и она вырезала из него другой, поменьше.

Вырезав крест, сестра собрала обрезки – их оказалось всего 4 – и решила, что из них можно, не разрезая ни одного лоскутка, сшить еще один крест и притом точно такой же величины, как первый.

Рис. 49. Два красных креста из одного большого.

А значит, вместо одного креста у нее оказалось два поменьше одинаковой величины – один цельный, другой составной.

Можете ли вы показать, как сестра это сделала?

55. Лунный серп

Фигуру лунного серпа (рис. 50) требуется разделить на 6 частей, проведя всего только две прямые линии.

Как это сделать?

Рис. 50. Лунный серп.

56. Деление запятой

Вы видите здесь широкую «запятую» (рис. 51) – Она построена очень просто: на прямой АВ описан полукруг, а затем на каждой половине АВ описаны полукруги – один вправо, другой влево.

Задача состоит в том, чтобы разрезать запятую одной кривой линией на две совершенно одинаковые части.

Рис. 51. Деление «запятой» на две равные (по площади) части.

Фигура эта интересна еще и тем, что из двух таких фигур можно составить круг. Каким образом?

57. Развернуть куб

Если вы разрежете картонный куб вдоль ребер так, чтобы его можно было разогнуть и положить всеми 6-ю квадратами на стол, то получите фигуру вроде трех следующих:

Любопытно сосчитать: сколько различных фигур можно получить таким путем? Другими словами, сколькими способами можно развернуть куб на плоскости? Предупреждаю нетерпеливого читателя, что различных фигур не менее двенадцати. Различными условимся считать две развертки, которые не совпадают при наложении друг с другом или одной из них с ее зеркальным отражением.

Рис. 52. Куб и его развертки.

58. Составить квадрат

Можете ли вы составить квадрат из пяти кусков бумаги, показанных на рис. 53?

Если вы догадались, как решить эту задачу, попробуйте составить квадрат из пяти одинаковых треугольников той же формы, что и те, с которыми вы сейчас имели дело (один катет вдвое длиннее другого, рис. 54). Вы можете разрезать один треугольник на две части, но остальные четыре должны идти в дело целыми.

Рис. 53. Заготовка для квадрата.

Рис. 54. Еще одна заготовка для квадрата.

59. Четыре колодца

На квадратном участке земли имеются четыре колодца: три рядом, близ края участка, и один в углу (рис. 55) – Участок перешел к четырем арендаторам, которые решили разделить его между собой, но так, чтобы у всех были участки совершенно одинаковой формы и чтобы на каждом из них находился колодец.

Рис. 55. Как разделить землю и колодцы?

Можно ли это сделать?

60. Куда девался квадратик?

В заключение наших занятий с разрезанием фигур покажу читателю интересный пример разрезания, при котором неизвестно куда исчезает кусочек фигуры.

На клетчатой бумаге вычерчиваю квадрат, заключающий 64 маленьких квадратика. Затем провожу косую линию слева направо, начиная с той точки вверху, где сходятся первый и второй квадратики, и кончая правым нижним углом большого квадрата.

Рис. 56. Куда исчез один квадратик?

Противоположный конец этой косой линии разрежет пополам последний квадратик справа, и в нем образуются два треугольничка. Нижний треугольничек обозначим буквой С. Всю левую часть чертежа обозначим буквой А, правую – буквой В. Теперь разрезаю чертеж по косой линии и двигаю правую часть косо вверх по разрезу так, чтобы эта часть поднялась на один ряд квадратиков. Вверху окажется при этом маленький пустой треугольничек, а внизу направо будет выдаваться треугольничек С. Беру ножницы, отрезаю выступающий маленький треугольничек С и помещаю его вверху – там, где остался незанятый треугольник. Он приходится сюда как раз впору. У нас получился прямоугольник, имеющий 7 квадратиков в высоту и 9 квадратиков в ширину. Но 7 х 9 = 63. Значит, наш прямоугольник заключает теперь всего 63 квадратика, между тем как прежде их было 64.

Куда же девался один квадратик?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*