KnigaRead.com/
KnigaRead.com » Детская литература » Прочая детская литература » Рэймонд Смаллиан - Как же называется эта книга

Рэймонд Смаллиан - Как же называется эта книга

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рэймонд Смаллиан, "Как же называется эта книга" бесплатно, без регистрации.
Перейти на страницу:

После того как условие G доказано, ответить на вопросы логика уже не трудно. Дано, что множество номеров A всех доказуемых высказываний учтенное множество.

Следовательно, по условию C множество 5A всех чисел, не совпадающих с номерами доказуемых высказываний, также учтенное множество. Значит (по условию G), существует высказывание X, которое истинно в том и только в том случае, если его номер принадлежит множеству 6A. Но если номер высказывания X принадлежит множеству 7A, то он не принадлежит множеству A, то есть высказывание X недоказуемо (так как множество A состоит из номеров доказуемых высказываний). Итак, X истинно в том и только в том случае, если X недоказуемо. Это означает, что либо X истинно и недоказуемо, либо X ложно и доказуемо. По условиям задачи ни одно ложное высказывание недоказуемо в системе. Следовательно, X должно быть истинным и недоказуемым в системе.

Построим теперь ложное высказывание, которое неопровержимо в системе. Пусть A - множество всех опровержимых высказываний. Воспользовавшись условием G, мы получим высказывание Y, истинное в том и только в том случае, если его номер совпадает с номером какого-нибудь опровержимого высказывания, то есть Y истинно в том и только в том случае, если Y опровержимо. Это означает, что Y либо истинно и опровержимо, либо ложно и неопровержимо. Первая альтернатива отпадает, так как опровержимое высказывание не может быть истинным. Следовательно, Y должно быть ложным, но неопровержимым в системе.

Перейдем теперь к остальным вопросам логики. Если бы множество номеров всех ложных высказываний было учтенным множеством, то существовало бы высказывание Z, которое было бы истинным в том и только в том случае, если бы его номер совпадал с номером какого-нибудь ложного высказывания.

Иначе говоря, Z было бы истинным в том и только в том случае, если Z ложно, что невозможно. (Z напоминало бы высказывание "это высказывание ложно".) Следовательно, множество номеров всех ложных высказываний неучтенное множество. Из условия C следует, что множество номеров истинных высказываний также не является учтенным множеством.


270. Теорема Гёделя.

Предыдущая задача представляет собой не что иное, как упрощенный вариант знаменитой теоремы Гёделя о полноте.

В 1931 г. Курт Гёдель совершил поразительное открытие. Он установил, что математическую истину в некотором смысле нельзя формализовать полностью. Гёдель доказал, что в математической системе, принадлежащей широкому классу систем, всегда найдется утверждение, недоказуемое (то есть невыводимое из аксиом системы), несмотря на свою истинность! Следовательно, ни одной аксиоматической системы, сколь бы остроумно она ни была устроена, не достаточно для доказательства всех математических истин.

Гёдель впервые доказал свою теорему для системы "Principia Mathematica" Уайтхеда и Расселла, но предложенное им доказательство, как я уже говорил, допускает перенос и на многие другие системы. Во всех этих системах существует вполне определенное множество выражений, называемых предложениями, которые подразделяются на истинные и ложные. Некоторые истинные предложения приняты за аксиомы системы. Точный перечень правил вывода позволяет доказывать (выводить из аксиом) одни предложения и опровергать другие.

Помимо предложений система содержит имена различных множеств (целых и положительных) чисел. Любое множества чисел, наделенное в рассматриваемой системе именем, можно назвать именуемым, или определимым, множеством системы (в предыдущей задаче такие множества скрывались под псевдонимом "учтенные множества"). Весьма существенно, что все предложения можно перенумеровать, а все определимые множества перечислить по порядку. Это означает, что математическая система удовлетворяет условиям E1, E2, C и H нашей задачи. (Номер, присваиваемый каждому предложению, - в задаче мы называли его просто номером - в математической логике известен подназванием гёделевого номера предложения.) Доказать, что система удовлетворяет условиям C и H, очень просто. Доказательство того, что система удовлетворяет условиям E1 и E2, в принципе несложно /* Напомним условие H. Для любого числа n существует высказывание, утверждающее, что n - экстраординарное число. Это высказывание (как и всякое другое предложение)

имеет гёделев номер. Обозначим его n*. Оказывается, что для любого определимого множества A множество B всех чисел n, для которых n* принадлежит A, также определимо.

Поскольку геделев номер n* сопряжен с числом n, то тем самым условие H выполнено.*/, но довольно громоздко. Коль скоро доказано, что система удовлетворяет всем четырем условиям, они позволяют построить предложение, которое истинно, но недоказуемо (невыводимо) в данной системе.

Это предложение можно представлять себе как некоторое предложение X, содержащее утверждение о своей недоказуемости. Такое предложение действительно должно быть истинно, но недоказуемо (подобно тому как житель острова G, утверждавший, что он непризнанный рыцарь, действительно был рыцарем, но не был признанным рыцарем).

Возможно, вы спросите: но если известно, что предложение X (содержащее утверждение о своей недоказуемости) истинно, то почему бы не принять его за новую аксиому? Разумеется, мы можем пополнить список аксиом системы еще одной аксиомой, но расширенная система также будет удовлетворять условиям E1, E2, C и H. Следовательно, в ней найдется другое предложение X1, которое будет истинным, но недоказуемым в расширенной системе. Таким образом, хотя расширенная система позволяет доказать больше истинных предложений, чем старая, тем не менее и в ней доказать все истинные предложения невозможно.

Должен сказать, что мое изложение метода Гёделя отличается от первоначального доказательства теоремы, предложенного самим Гёделем. Основное отличие состоит в том, что я использую понятие истинности, отсутствующее у Гёделя.

Действительно, в первоначальном виде теорема Гёделя не содержит утверждения о существовании в системе истинного, но недоказуемого (невыводимого) предложения. В ней говорится нечто иное: при некотором правдоподобном допущении относительно системы в ней непременно существует предложение (и Гёдель демонстрирует такое предложение), которое в рамках системы невозможно ни доказать, ни опровергнуть.

Понятие истинности было строго формализовано логиком Альфредом Тарским. Он доказал, что для математических систем, удовлетворяющих условиям теоремы Гёделя, множество гёделевых номеров истинных предложений неопределимо в системе. Иногда этот результат формулируют так: "Во всякой достаточно мощной системе истинность предложений системы неопределима в рамках самой системы".


271. Последнее слово.

Рассмотрим следующий парадокс:

Это предложение недоказуемо.

Парадокс состоит в следующем. Если это предложение ложно, то не верно, что оно недоказуемо. Следовательно, оно доказуемо, а это означает, что оно истинно. Итак, предположив, что это предложение ложно, мы пришли к противоречию. Значит, оно должно быть истинно.

А теперь будьте внимательны! Я доказал, что предложение, набранное курсивом, истинно. Но в истинном предложении говорится о том, что есть на самом деле. Значит, оно недоказуемо. Как же мне удалось доказать его?

Где ошибка в приведенных мною рассуждениях? Ошибка в том, что понятие доказуемого предложения не вполне определенно. Одна из основных задач важного раздела современной математики, известного под названием "математической логики", состоит в придании точного значения понятию доказательства. Вполне строгого универсального определения доказательства, применимого к любым математическим системам, пока не существует. В современной математической логике принято говорить о доказуемости в рамках данной системы. Предположим, что у нас имеется система (назовем ее системой S), в которой строго определено, что такое доказуемость в рамках системы S. Предположим также, что система S непротиворечива, то есть что всякое доказуемое в S предложение действительно истинно. Рассмотрим следующее предложение:

Это предложение недоказуемо в системе S.

Никакого парадокса теперь не возникает, хотя это предложение обладает одним довольно интересным свойством.

Дело в том, что оно должно быть истинным, но недоказуемым в системе S. Оно представляет собой грубый аналог предложения X (содержащего утверждение о собственной недоказуемости не вообще, а в рамках системы S), построенного Гёделем в первоначальном варианте доказательства его знаменитой теоремы.

Несколько слов я хотел бы сказать о "дважды гёделевом"

условии, которое мы анализировали в разделе Б. Дело в том, что полученный Гёделем результат справедлив не только для гёделевых систем (гёделевой я называю систему, в которой для любого определимого множества A найдется предложение, истинное в том и только в том случае, если его гёделев номер принадлежит A), но и для дважды гёделевых систем (дважды гёдёлевой я называю систему, в которой для любых определимых множеств A, B найдутся предложения X, Y, такие, что X истинно в том и только в том случае, если гёделев номер предложения Y принадлежит A, а Y истинно в том и только в том случае, если гёделев номер предложения X принадлежит B). Располагая дважды гёделевой системой, мы можем (используя условия E1, E2 и C построить два предложения X, Y, такие, что X будет содержать утверждение о доказуемости предложения Y (при этом я понимаю, что X истинно в том и только в том случае, если Y доказуемо), а Y будет содержать утверждение о недоказуемости предложения X.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*