Яков Перельман - Веселые задачи. Две сотни головоломок
Но сложите из тех же спичек два таких четырехугольника, чтобы один был в три раза больше другого по площади!
Решения задач 1-10
1. Ниже указан самый короткий способ обмена. Цифры показывают, с какого пня на какой надо прыгать (например, 1–5 означает, что белка прыгает с 1-го пня на 5-й). Всех прыжков понадобится 16, а именно:
1-5;
3 – 7, 7 – 1;
8 – 4, 4 – 3, 3 – 7;
6 – 2, 2 – 8, 8 – 4, 4 – 3;
5 – 6, 6 – 2, 2 – 8;
1 – 5, 5 – 6;
7-1.
2. Для удобства заменим чайную посуду цифрами. Тогда задача представится в таком виде: надо поменять местами предметы 2 и 5.
Рис. 11. Задачи о перестановке чайной посуды.
Вот порядок, в каком их следует передвигать на свободный квадрат:
2, 5, 4, 2,1,3, 2, 4, 5,1,4, 2, 3,4,1,5, 2.
Задача решается в 17 ходов; более короткого решения нет.3. В таблице показаны по порядку все переезды, необходимые для того, чтобы помочь заведующему гаражом выйти из затруднительного положения. Цифры обозначают номера автомобилей, а буквы – соответствующие помещения. (6-С означает, что автомобиль 6 ставится в отделение Сит. п.)
Всех переездов понадобится 43. Вот они:
4. Три непересекающихся пути показаны на рис. 12. И Петру, и Павлу приходится идти довольно извилистой дорогой – но зато братья избегают нежелательных встреч.
5. Стрелки на рис. 13 показывают, какие мухи переменили место и с каких клеток они пересели.
Рис. 12. Три непересекающихся пути.
6. Забор можно поставить двумя способами (рис. 14 а, б). Забор, построенный по второму плану, короче и, следовательно, дешевле.
7. Вот единственное расположение, при котором 2 дома находятся в безопасности от нападения извне (рис. 15).
Рис. 13. Мухи на занавеске (в новой позиции).
Все 10 домов расположены здесь, как требовалось в задаче: по 4 на каждой из пяти прямых стен.
8. Деревья, оставшиеся несрубленными, расположены так, как показано на рис. 16. Как видите, они действительно образуют 5 прямых рядов, и в каждом ряду 4 дерева.
Рис. 14 а, б. Как оградить озеро от коров.
Рис. 15. Дома и стены (два дома в безопасности).
9. Кошка должна съесть первой ту мышь, которая находится у кончика ее хвоста (рис. 9).
Попробуйте, начав с этой мыши счет по часовой стрелке, зачеркивать каждую 13-ю мышь, и вы убедитесь, что белая мышь будет зачеркнута последней.
Рис. 16. Сад после вырубки деревьев.
Рис. 17.
10. На рис. 17 показано, как надо сложить из 18 спичек два четырехугольника, чтобы один был втрое больше другого по площади. Второй четырехугольник является параллелограммом с высотой, равной 1V2 спичкам. Площадь параллелограмма равна его основанию, умноженному на высоту. В основании нашего параллелограмма лежат 4 спички, высота же равна 1V2 спичкам; следовательно, площадь равна А> 1V2, т. е. 6 таким квадратикам, каких в меньшем четырехугольнике 2. Итак, правый четырехугольник имеет площадь втрое большую, нежели левый.
Десять легких задач
11. Бочки
В магазин доставили 6 бочек керосина. На рис. 18 обозначено, сколько ведер было в каждой бочке. В первый же день нашлось два покупателя; один купил целиком две бочки, другой – три, причем первый купил вдвое меньше керосина, чем второй. Так что не пришлось даже раскупоривать бочек.
Рис. 18. Бочки с керосином.
Из 6 бочек на складе осталась всего одна. Которая?
12. До половины
Бочка заполнена водой примерно наполовину. Но вы хотите узнать, точно ли до половины в ней налито воды. У вас нет ни палки, ни какого-либо другого инструмента для замера содержимого бочки. Втулки бочка не имеет.
Каким образом можно узнать, ровно ли наполовину заполнена бочка?
13. Невозможное равенство
Кстати, о полупустой бочке. Полупустая бочка – это ведь то же, что и полуполная. Но если половины равны, то должны быть равны и целые. Полупустая бочка равна полуполной – значит, пустая бочка должна равняться полной. Выходит, что пустой равен полному!
Почему получился такой несообразный вывод?
14. Число волос
Как вы думаете: существуют ли на свете два человека с одинаковым числом волос? Вы можете ответить, что два совершенно лысых человека имеют волос поровну, потому что и у того, и у другого ноль волос. Это, если хотите, правильно.
Но я спрашиваю не о безволосых людях, а о таких, у которых на голове имеются густые волосы. Найдутся ли в мире два человека с совершенно одинаковым числом волос на голове? А может быть, двое таких людей отыщутся в Ленинграде или в Москве?
15. Цена переплета
Книга в переплете стоит 2 руб. 50 коп. Книга на 2 руб. дороже переплета. Сколько стоит переплет?
16. Цена книги
Иванов приобретает все нужные ему книги у знакомого ему книготорговца со скидкой 20 %. С 1 января цены всех книг повышены на 20 %. Иванов решил, что он будет теперь платить за книги столько, сколько остальные покупатели платили до 1 января.
Прав ли он?
17. Головы и ноги
На лугу паслись лошади под присмотром пастухов. Если бы вы пожелали узнать, сколько всех ног на лугу, то насчитали бы 82 ноги. А если бы пересчитали головы, то оказалось бы, что всех голов – лошадиных и человеческих – 26.
Сколько на лугу лошадей и сколько пастухов? Надо заметить, что ни безногих лошадей, ни калек-пастухов на лугу не было.
18. На счетах
Вы, без сомнения, умеете считать на конторских счетах и понимаете, что отложить на них 25 руб. – задача очень легкая (рис. 19).Рис. 19. На конторских счетах отложено 25 семью косточками.
Но задача станет более замысловатой, если вам поставят условие: сделать это так, чтобы отодвинуть не 7 косточек, а 25.
Попробуйте, в самом деле, показать на конторских счетах сумму в 25 руб., отложив ровно 25 косточек. Конечно, на практике так никогда не делается, но задача все же разрешима, и ответ довольно любопытен.
19. Редкая монета
Собирателю редкостей сообщили, что в Риме при раскопках найдена монета с надписью по-латыни:
53 год до P. X .
– Монета, конечно, поддельная, – ответил собиратель. Как он узнал это, не видя ни самой монеты, ни даже ее изображения?
20. Спаржа
Одна женщина обыкновенно покупала у зеленщика спаржу большими пучками, каждый 40 см в окружности. Покупая, она мерила их, чтобы убедиться, что ее не обманывают. Но однажды у торговца не оказалось 40-сантиметрового пучка, и он предложил покупательнице за те же деньги два тонких пучка, каждый по 20 см в обхвате.
Женщина обмерила пучки и, убедившись, что обхват каждого действительно равен 20 см, заплатила зеленщику столько же, сколько платила раньше за один толстый пучок.
Она прогадала или выгадала на этой покупке?
Рис. 2.0. Как выгоднее покупать спаржу?
Решения задач 11-20
11. Первый покупатель купил 15-ведерную и 18-ведерную бочки. Второй – 16-ведерную, 19-ведерную и 31-ведерную.
В самом деле:
15 + 18 = 33
16 + 19 + 31 =66,
т. е. второй покупатель приобрел вдвое больше керосина, чем первый.
Осталась непроданной 20-ведерная бочка. Это единственный возможный ответ. Другие сочетания не дают требуемого соотношения.12. Самый простой способ – наклонить бочку так, чтобы вода дошла до края. Если при этом дно бочки немного обнажится, то значит, вода стояла ниже половины. Если дно окажется ниже уровня воды, значит, воды было налито больше, чем до половины. И наконец, если верхний край дна будет как раз на уровне воды, значит, бочка была наполнена ровно наполовину.
13. Полупустая бочка есть не половина пустой бочки, а такая бочка, одна половину которой пуста, а другая – полна. Мы же рассуждали так, как будто слово «полупустая» значит «половина пустой бочки», а слово «полу-полная» – «половина полной». Не удивительно, что при таком неправильном понимании мы пришли к неправильному выводу.
Рис. 21. Сколько воды в бочке?
14. Прежде чем решать задачу, задайте себе вопрос: чего больше – людей на свете или волос на голове одного человека? Разумеется, людей на свете неизмеримо больше, чем волос на голове. У нас их всего 150–200 тысяч, людей же на свете 1800 миллионов [1] А если так, то непременно должны существовать люди с одинаковым числом волос! И не только во всем мире, но даже в каждом многолюдном городе, насчитывающем больше 200 тысяч жителей. В Москве 1,5 миллиона* жителей, и, значит, десятки москвичей должны иметь одинаковое число волос. Ведь не может же быть полутора миллиона различных целых чисел, среди которых ни одно не оказалось бы больше 200 000.
15. Обычно, не подумав, отвечают:
– Переплет стоит 50 коп.
Но ведь тогда книга стоила бы 2 руб., т. е. была всего на 1 руб. 50 коп. дороже переплета!
Верный ответ такой: цена переплета – 25 коп., цена книги – 2 руб. 25 коп.16. Иванов, как ни странно, и теперь будет платить меньше, чем остальные покупатели платили до 1 января. Он имеет 20 %-ю скидку с цены, увеличенной на 20 %; другими словами, скидку 20 % от 120 %, т. е. платить он будет за книгу не 100 %, а всего лишь 96 % прежней ее цены. Трехрублевую книгу приобретет не за 3 руб., а за 2 руб. 88 коп.