KnigaRead.com/
KnigaRead.com » Детская литература » Прочая детская литература » Рэймонд Смаллиан - Как же называется эта книга

Рэймонд Смаллиан - Как же называется эта книга

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рэймонд Смаллиан, "Как же называется эта книга" бесплатно, без регистрации.
Перейти на страницу:

103.

А вот гораздо более простая задача. Известно, что преступник - не нормальный человек. Вы не преступник, но вполне нормальны. Какое высказывание, которое не могло бы исходить ни от виновного рыцаря, ни от лжеца, вы бы произнесли на суде, чтобы убедить присяжных в своей невиновности?


104.

Эта задача поинтереснее. Известно, что преступник - не нормальный человек. Предположим, что 1) вы не виновны и что 2) вы не лжец.

Можете ли вы одним-единственным высказыванием убедить присяжных в этих двух фактах?


105.

Эта задача в известном смысле "двойственна" предыдущей.

Известно, что преступник - не нормальный человек, вы не виновны, но не рыцарь. Предположим, что по каким-то известным вам соображениям вы не прочь приобрести репутацию лжеца или нормального человека, но с презрением относитесь к рыцарям. Могли бы вы одним-единственным высказыванием убедить присяжных в том, что вы не виновны, но не рыцарь?

Г. КАК ЖЕНИТЬСЯ НА ДОЧЕРИ КОРОЛЯ?

Наконец-то мы добрались до темы, которую вы все ожидали с нетерпением!


106.

Вы, житель острова рыцарей, лжецов и нормальных людей, влюблены в дочь короля Маргозиту и хотите жениться на ней.

Король не желает, чтобы его дочь вышла замуж за нормального человека, и дает ей отеческие наставления: "Поверь мне, дорогая, тебе действительно не следует выходить замуж за нормального человека. Нормальные люди капризны, переменчивы, на них ни в чем нельзя положиться. С ними никогда не знаешь, где находишься. Один день он говорит тебе правду, на другой день лжет. Что в этом хорошего?

Рыцарь же надежен, как скала. С ним всегда знаешь, на чем стоишь. С лжецом тоже чувствуешь себя вполне уверенно: что бы он ни сказал, стоит тебе лишь заменить его высказывание противоположным, и ты знаешь, как обстоит дело в действительности. Я считаю, что у человека должны быть какие-то принципы, которым он неукоснительно следует. Если человек видит высшее наслаждение в том, чтобы говорить правду, пусть говорит правду. Если считает, что ложь превыше всего, пусть лжет. А что представляют собой эти добропорядочные нормальные люди? Так себе: серединка на половинку, ни правды, ни лжи. Нет, они не для тебя!"

Предположим теперь, что вы не нормальный человек (и поэтому имеете шанс обрести в жены дочь короля). Чтобы получить согласие короля на ваш брак с его дочерью, вам необходимо убедить его в том, что вы не нормальный человек. Король дает вам аудиенцию, во время которой вы можете произнести сколько угодно высказываний. Задача подразделяется на две части.

а) Сколько истинных высказываний понадобится вам, чтобы убедить короля в том, что его будущий зять - не нормальный человек?

б) Сколько ложных высказываний понадобится вам, чтобы убедить короля в том, что его будущий зять - не нормальный человек?

(Подчеркнем, что и в том и в другом случае речь идет о минимальном числе высказываний.)


107.

На другом острове рыцарей, лжецов и нормальных людей король придерживался противоположных взглядов и дал дочери иные отеческие наставления: "Дорогая, я не хочу, чтобы ты вышла замуж за какого-нибудь рыцаря или лжеца. Мне хотелось бы, чтобы твой муж был солидным нормальным человеком с хорошей репутацией. Тебе не следует выходить замуж за рыцаря, потому что все рыцари - ханжи. Тебе не следует выходить замуж и за лжеца, потому что все лжецы вероломны. Нет, что ни говори, а добропорядочный нормальный человек был бы тебе как раз под пару!"

Предположим, что вы житель этого острова и нормальный человек. Ваша задача - убедить короля в том, что вы нормальный человек.

а) Сколько истинных высказываний понадобится вам для этого?

б) Сколько ложных высказываний понадобится вам для той же цели?

(И в том и в другом случае речь идет о минимальном числе высказываний.)


108.

Перед вами более сложный вариант предыдущей задачи. Ее решение представляет собой альтернативу (хотя и чрезмерно сложную) решению предыдущей задачи, но, чтобы решить ее, одного лишь решения предыдущей задачи недостаточно.

Предположим, что вы житель острова рыцарей, лжецов и нормальных людей и сами нормальный человек. Король хочет, чтобы его дочь вышла замуж только за нормального человека, но требует доказательства исключительного остроумия и сообразительности от своего будущего зятя. Чтобы получить руку королевской дочери, вы должны в присутствии его величества произнести одно-единственное высказывание, которое удовлетворяло бы двум следующим условиям:

1) Оно должно убедить короля в том, что вы нормальный человек.

2) Король не должен знать, истинно или ложно ваше высказывание.

Как это сделать?

РЕШЕНИЯ

88. C - либо рыцарь, либо лжец. Предположим, что C - рыцарь. Тогда по крайней мере двое из трех островитян - лжецы. Следовательно, ими должны быть A и B. Отсюда мы заключаем, что B - оборотень (так как, по его словам, он не оборотень, а по доказанному B - лжец). Итак, если C - рыцарь, то оборотень - лжец (так как им должен быть B). Предположим теперь, что C - лжец. Тогда неверно, что по крайней мере два из трех островитян - лжецы, поэтому среди них есть самое большее один лжец. Этим лжецом должен быть C. Следовательно, и A, и B - рыцари. Так как A рыцарь и утверждает, что C - оборотень, то C действительно оборотень. Таким образом, и в этом случае оборотень - лжец (а именно C).

Следовательно, независимо от того, рыцарь ли C или лжец, оборотень лжец (хотя в каждом случае речь идет о другом лице). Итак, ответ на первый вопрос гласит: оборотень - лжец. Кроме того, мы доказали, что оборотнем может быть либо B, либо C. Следовательно, если вы хотите выбрать себе попутчика, который заведомо не был бы оборотнем, то вам следует остановить свой выбор на A.

89. Докажем сначала, что C - рыцарь. Предположим, что C был бы лжецом. Тогда его первое высказывание было бы ложным, поэтому по крайней мере двое из трех островитян были бы рыцарями. Это означало бы, что A и B оба должны быть рыцарями (так как по предположению C - лжец).

Следовательно, их высказывания были бы истинными, и они оба вопреки условиям задачи были бы оборотнями. Итак, C - рыцарь. Тогда ровно двое из трех лжецы. Ими должны быть A и B. А поскольку их высказывания ложны, то ни A, ни B не оборотни. Следовательно, оборотнем должен быть C. Таким образом, C - рыцарь и оборотень, A и B - лжецы, и ни один из них не оборотень.

90. Если бы B был лжецом, то по крайней мере один из трех островитян действительно был бы лжецом. Но тогда его высказывание было бы истинным, и мы пришли бы к противоречию, так как лжецы не говорят правды.

Следовательно, B - рыцарь. Тогда высказывание A истинно, и A также должен быть рыцарем. Таким образом, и A, и B - рыцари. Так как B рыцарь, то его высказывание истинно, поэтому один из трех - рыцарь. Им должен быть C.

Следовательно, он и только он оборотень.

91. A должен быть рыцарем по тем же самым причинам, по которым в предыдущей задаче был рыцарем B, а именно: если бы A был лжецом, то было бы истинным высказывание о том, что по крайней мере один из трех лжец, и мы пришли бы к противоречию (высказывание лжеца было бы истинным). Так как A - рыцарь, то его высказывание истинно, поэтому по крайней мере один из трех действительно лжец. Если бы B был рыцарем, то (в силу высказывания B) C также был бы рыцарем, и все трое оказались бы рыцарями. Но в истинном высказывании A утверждается, что по крайней мере один из трех - лжец. Следовательно, B должен быть лжецом. А так как B утверждает, что C рыцарь, то C в действительности лжец. Таким образом, A - единственный рыцарь.

Следовательно, A - оборотень.

92. Из высказывания A следует, что A должен быть рыцарем и по крайней мере один из трех должен быть лжецом. Если бы B был рыцарем, то C был бы оборотнем и, значит, еще одним рыцарем, но тогда трое были бы рыцарями. Следовательно, B - Но тогда C не оборотень. Поскольку известно, что оборотень - рыцарь, то B также не может быть оборотнем.

Значит, оборотень A.

93. Если бы B был рыцарем, то C был бы оборотнем и рыцарем, то есть рыцарей было бы двое. Следовательно, B - лжец, а C не оборотень. Кроме того, B, будучи лжецом, не оборотень.

Значит, оборотень A.

94. Вам следовало бы выбрать A. Предположим, что B - рыцарь. Тогда его высказывание истинно. Следовательно, оборотень - лжец, поэтому B не может быть оборотнем.

Предположим, что B - лжец. Тогда его высказывание ложно, а это означает, что оборотень в действительности рыцарь.

Следовательно, и в этом случае B не может быть оборотнем.

95. Все, что вам нужно; сказать: "Я бедный лжец". Из этого высказывания ваша возлюбленная сразу же заключит, что вы не рыцарь (поскольку рыцарь не стал бы лгать и утверждать, что он бедный лжец). Следовательно, вы должны быть лжецом, а так как ваше высказывание ложно, то вы не бедный лжец. Но вы лжец, поэтому вы должны быть богатым лжецом.

96. Вам нужно сказать: "Я не бедный рыцарь". Услыхав такое признание, ваша возлюбленная стала бы рассуждать следующим образом. Если бы вы были лжецом, то вы действительно не были бы бедным рыцарем. Следовательно, ваше высказывание было бы истинным. Это означало бы, что вы, будучи лжецом, высказали истинное утверждение.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*