KnigaRead.com/

Яков Перельман - Физика на каждом шагу

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Перельман, "Физика на каждом шагу" бесплатно, без регистрации.
Перейти на страницу:

– По вашим словам, можно думать, что вы производили подобные опыты, иначе вы не говорили бы таким образом.

– Не производя таких опытов, мы можем путем одного лишь краткого рассуждения доказать невозможность того, чтобы больший груз двигался скорее, нежели меньший, если они состоят из одного и того же вещества. Если у нас имеются два тела, обладающие разными скоростями, и если мы их соединим, то ясно, что движущееся скорее получит замедление, а движущееся медленнее – ускорение. Согласны вы с этим?

– Этот вывод я нахожу совершенно правильным.

– Но если это верно и если бы было справедливо, что больший камень движется, например, со скоростью 8 локтей, а малый со скоростью 4 локтей, то оба вместе должны были бы, если их соединить, обладать скоростью меньше, чем в 8 локтей. Но ведь оба камня вместе, конечно, больше, чем большой камень, обладавший скоростью в 8 локтей; и, стало быть, выходит, что больший камень (происшедший от соединения двух) будет двигаться медленнее, чем меньший, – а это противоречит вашему предположению. Вы видите, что из допущения, будто большее тело обладает большею скоростью, чем меньшее, я вас могу привести к выводу, что большее тело движется медленнее, чем меньшее.

– Я совсем смущен, потому что мне все-таки кажется, что меньший камень, соединенный с большим, увеличивает его вес, а потому должен увеличить также и его скорость или, по крайней мере, не уменьшать ее.

– Вы впадаете в новую ошибку: неверно, будто меньший камень увеличивает вес большего.

– Вот как? Это выходит за границы моего понимания!

– Вы все поймете, если я вас высвобожу из того заблуждения, в котором вы находитесь. Заметьте хорошо, что в данном вопросе надо различать, движется ли уже тело или находится в покое. Если мы положим камень на одну чашку весов, то от прибавки еще одного камня вес увеличится; даже от прибавления куска пакли он возрастает. Но если вы возьмете камень, связанный с паклей, и дадите ему возможность свободно падать с большой высоты, то, как вы думаете, будет ли пакля во время движения давить на камень и ускорять его движение, или же камень будет задерживаться в своем движении, как бы поддерживаемый куском пакли? Мы ощущаем груз на наших плечах, если стараемся мешать его движению. Но если мы станем двигаться (вниз) с такою же скоростью, как и груз, лежащий на нашей спине, то как может он давить и обременять нас? Не согласны ли вы, что это подобно тому, как если бы мы захотели поразить копьем кого-либо, кто бежит впереди нас с такою же скоростью, как и мы? Итак, вы должны вывести заключение, что при свободном падении малый камень не давит на большой и не увеличивает его веса, как это бывает при покое.

– Ну, а если бы больший камень покоился на меньшем?

– Тогда он должен был бы увеличить его вес, если бы скорость его была больше. Но мы уже нашли, что если бы меньший груз падал медленнее, то уменьшил бы скорость большого груза; следовательно, составная масса двигалась бы медленнее своей части, что противоречит вашему допущению. Итак, разрешите принять, что большие и малые тела равного удельного веса движутся с одинаковою скоростью».

Замечательно, что подобные же мысли задолго до Галилея высказывал древнеримский поэт-ученый Лукреций Кар.

В своей большой поэме «О природе вещей» он утверждал, что свободно падающие вещи не могут давить одна на другую; кроме того, он ясно сознавал, что причина неодинаковой скорости падения различных вещей в воздухе или в жидкостях заключается в том, что вещи массивные встречают со стороны окружающей среды неодинаковое сопротивление.

Вот это поучительное место поэмы:

Если кто думает, будто тела, тяжелейшие весом,
прямо в пространстве пустом, проносясь с быстротою
великой,
падают сверху на более легкие и производят
этим толчки, что способны творящие вызвать движения, —
то уклоняются очень далеко от верной дороги.
Жидкой воды вещество, как и воздух весьма легковесный,
в равном размере падение тел всех замедлить не могут,
а уступают скорее дорогу телам с большим весом.
Но пустота никакому предмету, нигде, ниоткуда
не в состоянии вовсе оказывать сопротивленья,
так как всему поддаваться должна уж по самой природе.
Вследствие этого вещи, которые разнятся весом,
падать должны одинаково все в пустоте неподвижной.

Вверх по уклону

Мы так привыкли видеть тела, скатывающимися с наклонной плоскости вниз, что пример тела, свободно катящегося по ней вверх, кажется нам чудом. Нет ничего легче однако, как устроить такое мнимое чудо.

Возьмите два одинаковых кружка из легкого дерева и насадите их на валик, как колеса на ось (см. рис. 8). К валику прикрепите конец тонкой бечевки, к другому концу которой привязан груз. Намотав бечевку на валик так, чтобы груз вплотную примыкал к валику, поставьте колеса на наклонную дощечку; они сами покатятся, но не вниз, а вверх по уклону.


Рис. 8. Эти колеса могут катиться сами вверх по уклону


Причина понятна: груз, стремясь упасть, разматывает бечевку, заставляя тем самым вращаться колеса, которые и катятся вверх по уклону. Конечно, уклон должен быть не крутой. Здесь нет никакого нарушения законов физики. Внимательно проделывая опыт, вы можете заметить, что хотя колеса и вкатываются вверх, груз все же в конце пути не оказывается выше, чем в начале. Центр тяжести всего приборчика понизился.

Наш опыт можно обставить и еще занятнее. Обклейте колеса бумагой так, чтобы получился цилиндр, скрывающий свой нехитрый внутренний «механизм». Теперь, намотав бечевку на валик, поместите цилиндр посредине наклонной доски и спросите зрителей: куда покатится цилиндр – вверх или вниз? Все, разумеется, скажут, что вниз, и будут крайне изумлены, когда на их глазах цилиндр покатится вверх.

Как взвесили Землю

Прежде всего необходимо объяснить смысл выражения: «взвесить Землю». Ведь если бы даже было возможно взвалить земной шар на какие-нибудь весы, то где же весы эти установить? Когда мы говорим о весе какой-нибудь вещи, то в сущности речь идет о той силе, с какой вещь эта притягивается Землей или стремится падать к Земле, к ее центру. Но сама-то наша Земля не может же падать на себя! Поэтому говорить о весе земного шара бессмысленно, пока не установлено, что надо понимать под этими словами.

Смысл слов «вес Земли» может быть только таков. Вообразите, что из Земли вырезали куб в метр вышины и взвесили. Вес этого куба записали, а сам куб поместили на прежнее место; потом вырезали соседний кубический метр и тоже взвесили. Записав вес второго куба, установили его на свое место и вырезали третий. Если перебрать так один за другим все кубические метры, из которых состоит наша планета, взвесить их поодиночке, а затем все их веса сложить, мы узнаем, сколько весит все вещество, составляющее земной шар. Короче сказать, поступая указанным образом, мы взвесили бы Землю.

Само собою разумеется, что на деле выполнить такую работу немыслимо. Если бы мы даже могли изрыть всю поверхность земного шара, то забраться в его недра мы не в силах. Нигде еще человек не вкапывался в землю глубже 4 километров, – а ведь до центра земного шара свыше 6 000 километров… Значит ли это, что людям надо отказаться от надежды узнать вес своей планеты? Существует, однако, косвенный путь для взвешивания земного шара. Ученые пошли по этому пути и достигли полного успеха. Вот в чем состоит этот косвенный путь. Мы знаем, что вес вещи есть сила, с какою эта вещь притягивается Землею. Один кубический сантиметр воды притягивается Землею с силой одного грамма (ведь он весит один грамм). Если мы возьмем не кубический сантиметр воды, а кубический метр воды, заключающий воды в миллион раз больше, то он будет притягиваться в миллион раз сильнее: его вес будет 1 000 000 граммов, т. е. одна тонна. Но притяжение между взвешиваемою вещью и Землею зависит также от количества материи в ней, и если бы наша планета заключала в себе вещества в миллион раз больше, один грамм весил бы на такой Земле целую тонну. И наоборот, если бы Земля заключала в миллион раз меньше вещества, она притягивала бы все вещи во столько же раз слабее, и тогда один грамм весил бы на такой планете только миллионную долю грамма.

Косвенный путь взвешивания Земли состоял в том, что ученые изготовили как бы крошечную Землю и измерили, с какою силою она притягивает к себе 1 грамм вещества. Сделано это было примерно так. К одной чашке очень чувствительных и точных весов подвешивается шарик, и весы уравновешиваются гирей, поставленной на другую чашку. Затем под первую чашку подводят большой свинцовый шар, вес которого точно известен. При этом оказывается, что весы выходят из равновесия: большой шар притягивает к себе маленький шарик, подвешенный к чашке весов и заставляет ее опускаться. Чтобы снова уравновесить весы, нужно на другую чашку положить небольшой добавочный грузик. Этот добавочный грузик и измеряет ту силу, с какой большой шар притягивает к себе маленький. Мы можем теперь сказать, во сколько раз сила притяжения земного шара больше, чем сила притяжения свинцового шара. Но это еще не значит, что во столько же раз Земля тяжелее свинцового шара: надо принять в расчет и то, что подвешенный шарик отстоит от центра Земли на 6 400 километров, а от центра свинцового шара – всего только на несколько сантиметров. Ученым в точности известно, как ослабевает сила взаимного притяжения с увеличением расстояния; поэтому они смогли учесть влияние различия расстояния в нашем случае и определить, во сколько именно раз земной шар заключает в себе больше килограммов вещества, чем свинцовый. Короче сказать, они могли узнать, сколько весит Земля. А именно: узнали, что Земля весит круглым числом шесть тысяч миллионов миллионов миллионов тонн:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*