Владимир Левшин - В поисках похищенной марки
Только я собрался удивить губернатора, показав ему родную сестрицу его филателистической редкости, как Единичка ущипнула меня ещё больней, чем в первый раз, и заговорила сама:
— Увы, ваша светлость, я и на этот раз должна отказаться от подарка.
— Но почему?! — взревел изнемогающий от избытка благодарности губернатор.
Единичка скромно потупилась.
— Не хочу вас обижать, но дело в том, что на всём свете существуют только две такие марки.
— Ну да, — подтвердил губернатор, — одна в Терранигугу, вторая в Сьерранибумбуме.
— Почти так, — осторожно возразила Единичка, — потому что марка, хранившаяся в Терранигугу, недавно украдена.
Не может быть! — вскричал вице-губернатор, страшно побледнев. — Я об этом ничего не знал!
— Не мудрено, ваша светлость, — сказал я, — ведь уже восемь месяцев и двенадцать дней, как в Сьеррахимеру нет доступа никому со стороны!
— В самом деле, — пробормотал губернатор. — Неужели, воспользовавшись моим неведением, мне продали краденую марку?
— Судя по всему, ваша марка не из Терранигугу, — задумчиво сказала Единичка.
Губернатор вздохнул с облегчением:
— Слава богу! Значит, мне продали ту, что хранилась в Сьерранибумбуме.
— Скорей всего, так. Вопрос в том, с ведома ли владельца…
— Вы хотите сказать, что и эта марка краденая?! — снова ужаснулся губернатор.
Единичка уклончиво потупилась.
— Как знать…
— Сейчас мы это выясним! — Губернатор решительно хлопнул в ладоши. — Немедленно позвать сюда синьора Кактуса! Он продал — он пусть и отвечает!
Услыхав знакомое имя, я так и подскочил на месте, а Единичка разом забыла свои великосветские выкрутасы и затрубила что-то свирепое и воинственное. Точно она дикий индеец и собирается оскальпировать этого Кактуса… Однако увидеть его нам все же не довелось. Посланный за ним слуга вернулся один и доложил, что синьор Кактус срочно покинул Сьеррахимеру. Автомобиль его видели на шоссе, ведущем в Сьерранибумбум.
— Урррра!.. — заорал я и, подхватив Единичку, закружился с ней в неистовом танце.
— Не понимаю, чему вы радуетесь? — спросил сбитый с толку губернатор.
Чему я радуюсь? Ну, этого я ему не скажу… Но вы-то, конечно, понимаете, в чём дело! Теперь у меня все основания думать, что Кактус украл марку у синьора Альбертини и помчался заметать следы. Правда, есть тут и некая неувязка, потому что тот же Кактус каким-то образом связан с синьором Джерамини… Да, клубок снова запутывается. И всё же гордиева петля вокруг шеи преступника стягивается все туже…
— Скорей отделывайся от губернатора! — шепнул я Единичке. — Мы срочно едем в Сьерранибумбум!
ДВАДЦАТЬ ШЕСТОЕ ЗАСЕДАНИЕ КРМ
возглавлял, против обыкновения, не Нулик, а Олег: во время похода в кино президент проявил излишний интерес к мороженому и совершенно обезголосел. Изо рта у него вырывались сплошные шипящие и хрипящие, что, впрочем, не мешало ему оставаться заядлым спорщиком.
Только Олег позвонил в колокольчик и открыл заседание словами: «Итак, вернёмся к нашим баранам!», как президент, хрипя и давясь, заявил, что не позволит оскорблять Магистра и Единичку.
— Действительно неудобно как-то, — поддержала его Таня. — Ну при чём тут бараны? Помнится, Магистр сам сказал что-то такое. Но относилось это к губернатору…
— Да не к губернатору оно относилось, — возразил Сева. — «Вернёмся к нашим баранам» говорят тогда, когда хотят вернуться к существу дела.
— Объяснение точное, — подтвердил я. — Остаётся выяснить, откуда пошло это иносказательное выражение.
— Понятия не имею, — честно признался Сева.
— Беда поправимая, — сказал я. — Есть такая весёлая французская пьеска «Адвокат Патлен». Появилась она давным-давно, в шестнадцатом веке. Действие происходит в суде. Слушается дело о баранах. Хитрый адвокат Патлен всё время старается запутать ясный вопрос и отвлечь от него внимание судьи. А замороченный судья то и дело восклицает: «Вернёмся же к нашим баранам!»
— Забавная, наверное, сценка! Интересно, кто её написал?
— То-то и дело, что автор неизвестен.
— Автор неизвестен, автора давным-давно нет, а бараны его все живут, — философствовал Нулик.
— По этому случаю вернёмся наконец к нашим баранам, — предложил я. — Первым долгом обсудим вопрос Единички: чего больше — натуральных чисел или их квадратов?
— Но Единичка уже ответила на него! — возразила Таня. — И Магистру вряд ли удастся её опровергнуть.
— Между прочим, — напомнил Олег, — этим вопросом мы уже занимались. В прошлом году, когда говорили о множествах…
— А ведь верно! — сказала Таня. — Вопрос Единички и в самом деле касается множеств…
— Притом бесконечных множеств, — уточнил Сева. — И Единичка, конечно же, права: раз каждое число натурального ряда можно возвести в квадрат, значит, квадратов существует ровно столько, сколько натуральных чисел, то есть бесконечное множество.
— Надо сказать, Единичка доказала это очень простым способом, — вмешался я. — Над каждым квадратом она надписала его порядковый номер, то есть попросту пересчитала их. Недаром множества, которые можно перенумеровать, называются счётными.
— А разве есть множества, которые пересчитать нельзя? — спросил Нулик.
— Конечно. Вот, например, множество точек на отрезке прямой. Оно несчётное, хотя количество точек на любых отрезках прямой всегда одинаково.
— Как же так? — прошептал Нулик, окончательно потеряв голос от изумления.
— Вот так. Где, по-твоему, точек больше: на средней линии треугольника или на его основании?
— Что за вопрос! — фыркнул Нулик. — Конечно, на основании! Ведь оно вдвое длиннее средней линии.
— Не угадал. Пусть средняя линия вдвое меньше основания, а точек и тут и там совершенно одинаковое множество.
Я нарисовал треугольник, начертил его среднюю линию и провёл из вершины с десяток лучей, которые пересекли и среднюю линию и основание.
— Как видишь, каждый луч, пересекающий среднюю линию, непременно пересечёт и основание треугольника. Таких лучей я могу провести сколько угодно через любую точку средней линии. А раз так, значит, любой точке средней линии непременно соответствует какая-нибудь точка основания. Стало быть, множество точек и тут и там одинаково. Вот что бывает, когда имеешь дело с бесконечными несчётными множествами. Здесь сплошь да рядом часть равна целому.
— Ну и фокус! — выдохнул Сева.
— В бесконечности такие фокусы — дело обычное.
— Да, с бесконечностью лучше не связываться, — сказал Нулик. — И вообще пора нам отправляться на индульгенцию к вице-губернатору.
— А может, всё-таки на аудиенцию? — подмигнул Сева.
— Все остришь, да зря, — остановила его Таня. — Он ни того, ни другого не знает.
— Ничего, сейчас мы его просветим. Индульгенция, дорогой президент, слово латинское. В прямом значении это милость, а вообще-то так называется у католиков церковная грамота об отпущении грехов. Вот, например, натворил ты что-нибудь и хочешь искупить свою вину. Ступай к священнику да не забудь денег прихватить — и отпущение тебе обеспечено.
— А если денег у меня нет?
— Нет, так и ходи непрощенный.
— Ну и ладно! — неожиданно рассвирепел Нулик. — Не надо мне такой индульгенции!
— Мне тоже, — серьёзно согласился Олег. — Откупаться от грехов деньгами, это не для нас с тобой! Правда, Нулик? Мы люди порядочные. Махнём-ка лучше на приём, то бишь на аудиенцию к губернатору, и займёмся задачей о золотом полукруге.
Но президента, видимо, такая перспектива не слишком устраивала. Он вдруг безмолвно замотал головой, указывая пальцем на своё горло.
— А ещё порядочный человек! — потешалась Таня. — Спорить у него голоса хватает, а как надо задачу решать — так нет его!
Она взяла циркуль, линейку, вычертила на бумаге полукруг и сделала на нём две отметки: одну посередине диаметра, другую посередине полуокружности.
— Явное нарушение! — не выдержал президент. — Во-первых, решать задачу с помощью линейки по условию нельзя, а во-вторых, полукруг должен быть золотой.
— Во-первых, — весело передразнила Таня, — обойдёшься и нарисованным полукругом. Во-вторых, к решению я ещё только приступаю. Значит, так. Требуется отделить от полукруга часть, равновеликую квадрату, сторона которого равна радиусу полукруга.
— А это и есть квадратура круга! — запрыгал на одной ножке Нулик.
— Так думает Магистр, — возразила Таня. — И он, как всегда, неправ. В задаче о квадратуре круга требуется заменить равновеликим квадратом весь круг. Мы же должны заменить квадратом всего лишь часть круга.
— Все равно, — не унимался президент, — значит, это частичная квадратура круга.
— Скорее, наоборот, — поправил я, — не частичная квадратура, а квадратура части круга. И если полный круг заменить равновеликим квадратом немыслимо, то хитро выделенную часть круга в квадрат превратить можно. Это и собирается доказать нам Таня.