KnigaRead.com/

Владимир Левшин - Черная маска из Аль-Джебры

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Левшин, "Черная маска из Аль-Джебры" бесплатно, без регистрации.
Перейти на страницу:

Мы с интересом ждали, что же дальше? И дождались: x = (b + 8c) / 6a

— Дудки! — сказал я. — Какое же это решение? Маска с Икса нипочем не свалится.

Но маска все-таки свалилась.

— Вы привыкли, что Икс равен числу, — улыбнулась Эф. — Но не забывайте, где вы находитесь. Ведь главный девиз Аль-Джебры…

— Упрощение и обобщение! — сказали мы хором.

— Правильно. Вот в этом решении и собраны все возможные ответы при любых числовых значениях а, b и с. Замените буквы какими угодно числами, и вы убедитесь, что я права.

Вот, когда я наподставлялся в свое удовольствие! Это было так здорово, что ребята чуть не силком оттащили меня от этого занятия.

Мы пошли дальше. По дороге Таня все время ворчала:

— Несуразный ты человек! То покоя не давал — торопился составлять уравнения, а теперь, когда уже можно составлять, тебя отсюда калачом не выманишь!

Я, конечно, мог бы ей ответить как следует, но промолчал. Мужчина я или кто?

Сева.

У цели

(Олег — Нулику)

Да, Нулик, вот мы и у цели.

Эф привела нас на то самое место, где вырос и тут же разрушился воздушный замок. Помнишь, он нам еще так понравился?

— Теперь, — сказала Эф, — пора вам составлять уравнения. Подходите к любому Составителю. Каждый научит вас чему-нибудь новому. Здесь составляются уравнения на все случаи жизни.

Ну и дела! Без уравнений теперь «и ни туды и ни сюды». Задумал построить мост — составляй уравнения, хочешь запустить космический корабль — составляй уравнения. И для атомного реактора, и для нефтяной скважины, и даже для того, чтобы сшить на фабрике ботинки, — для всего нужно сперва составить уравнения, решить их и только тогда приступать к делу. Это уж точно.

Мы тут наблюдали за многими Составителями. Чтобы написать про всех, надо гору бумаги. Поэтому я расскажу тебе о двух-трех. На первый раз хватит.

Кроме Составителей, на этом строительстве много практикантов вроде нас.

Они тоже еще только учатся и потому часто попадают впросак. Но Составители на них не сердятся, а терпеливо разъясняют ошибки.

Один практикант строил стену из кирпичей. Положит несколько рядов, рассыплет и опять начнет. Мы слышали, как он сам с собой разговаривал:

— Так и через десять лет не построишь! Ну и задачка!

— Что это вы делаете? — спросила Таня.

— Стену строю, — вздохнул тот, — да вот ничего не получается.

— Наверное, потому, что вы не кладете цемента, — догадался Сева.

— Нет, цемент тут ни при чем.

Он протянул нам листок, где была написана такая задача: «Построить стену высотой в пять кирпичей так, чтобы в каждом следующем ряду было на два кирпича меньше, чем в предыдущем. При этом надо использовать 145 кирпичей».

— Разве это так трудно? — удивились мы.

— Еще бы! Ведь здесь не сказано, сколько кирпичей надо уложить в первом ряду. А без этого у меня ничего не получается. Положил 30 кирпичей. Тогда во втором надо уложить 28, в третьем — 26, в четвертом — 24, в пятом — 22. А 15 кирпичей остается! Попробовал положить в первый ряд 35 кирпичей, во второй — 33, и так далее. На пятый ряд кирпичей уже не хватило.

— Дайте-ка мне попробовать! — попросил Сева.

Он положил в первый ряд 34 кирпича, во второй — 32… Дошел до пятого, — опять не хватило!

— Не угадаешь!

— А тут гадать не надо, — сказал незнакомый голос.

Это к нам подошел Составитель уравнений Тэ. Мы познакомились.

— Чем гадать, — продолжал он, — лучше составить уравнение. Обозначим неизвестное число кирпичей в первом ряду буквой икс. Сколько же в таком случае их будет во втором ряду, если там должно быть на два кирпича меньше, чем в первом?

— Конечно, х — 2, — сообразила Таня.

— Правильно. Тогда в следующем ряду будет х — 4, затем х — 6 и, наконец, в последнем, пятом ряду х — 8 кирпичей. Сколько же всего пойдет кирпичей на строительство?

— Сумма всех этих чисел, — подсказал Сева, —

х + (х — 2) + (х — 4) + (х — 6) + (х — 8).

— Верно. А так как все это вместе по условию равно ста сорока пяти, получим уравнение:

х + х — 2 + х — 4 + х — 6 + х — 8 = 145.

— Ну, теперь уж просто, — отмахнулся Сева. — Остается сказать: «Аль-джебр! Аль-мукабала!» Одна минута, и бульон готов!

— Нет, — возразил Составитель, — не готов! Вы забыли привести подобные члены в левой части уравнения.

Привели подобные. Получилось: 5х — 20 = 145.

— Вот теперь и в самом деле можно приступить к восстановлению.

Перенесли число минус 20 в правую сторону с обратным знаком. Вышло, что 5х= 165, а х=33.

Я забыл тебе сказать, что составляли и решали уравнение мы не на бумаге: нам помогали живые буквы и цифры. А как только уравнение было решено, расколдованный Икс помахал нам своей маской и убежал. Мы стали проверять ответ и построили стену. И все оказалось правильно: 33 + 31 + 29 + 27 + 25 = 145.

Потом мы увидели того самого карликана, который собирался рыть котлован для фундамента. Он стоял возле одного Составителя, и они решали его задачу. Мы подошли и стали помогать. Это уравнение оказалось посложней первого.

— Итак, — сказал Составитель, — у вас три экскаватора. Первый может вырыть котлован за четыре часа, второй — за три, третий — за двенадцать. Неважный, наверное, экскаватор. Вы хотите, чтобы все три работали одновременно. Конечно, так они выроют котлован быстрее. Но за какое время? Составим уравнение. Что примем за Икс?

— Время, за которое все три экскаватора выроют весь котлован, — предложил я.

— Верно. Давайте дальше.

Тут я, как назло, запнулся. Ни туда ни сюда.

— Ладно уж, — сказал Составитель, — придется помочь. Выясним, какую часть котлована выроет каждый экскаватор за один час? Для этого условимся, что объем всего котлована равен единице.

— И что из этого следует? — спросил Сева.

— А из этого следует, — догадался я, — что первый экскаватор за час выроет одну четверть котлована, второй — одну треть, третий — одну двенадцатую.

— Ну конечно! — обрадовался Составитель. — Какую же часть они выроют за час, если будут работать все вместе?

На этот раз ответил Сева:

— Вот какую: 1/4 + 1/3 + 1/12

— Молодец! А за икс часов?

— А за икс часов они выроют в икс раз больше, — сказала Таня. — Это и будет весь котлован, объем которого мы приняли за единицу.

Так у нас получилось уравнение: х(1/4 + 1/3 + 1/12) = 1.

Ну, а решить такое уравнение было уже совсем легко: 8/12 х = 1.

Значит, Икс равен двенадцати восьмым, или х = 3/2.

Выходит, что три экскаватора, работая вместе, выроют котлован за полтора часа.

Неловко об этом говорить, но мне было очень приятно, когда маска с Икса упала и он стал нас благодарить.

Карликан заторопился к своим экскаваторам, а Составитель тут же предложил решить еще одну задачу, точно такую же, но… Что это за «но», ты сейчас поймешь.

— Признаться, надоели мне такие уравнения, — сказал Составитель, — слишком часто приходится их составлять. Везде идут стройки, везде роют котлованы. Пора бы уж сразу найти один ответ на все подобные вопросы. Ведь мы как-никак живем в Аль-Джебре…

— И потому должны упрощать и обобщать, — докончил Сева.

— Уж конечно! Не хотите ли вместе со мной вывести такое единое решение?

Мы молча кивнули, и Составитель начал:

— Так как экскаваторы бывают разных мощностей, то пусть первый из них роет котлован за а часов, второй — за b часов, ну а третий, допустим, за с часов. Спрашивается, за сколько часов выроют они котлован, если будут работать вместе?

— По-моему, — сказал я, — решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы ее изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу — за единицу.

— Так-так-так, — подбадривал Составитель.

Теперь рассуждала Таня:

— Очевидно, первый экскаватор совершит за час 1/а часть работы. Это, наверное, читается так: одну атую часть работы?

— Хорошо, хорошо.

— Тогда второй, — сказал Сева, — за час совершит одну бэтую: — 1/b, а третий одну цэтую: 1/c часть работы. А все вместе они выроют за час сумму этих дробей; 1/a + 1/b + 1/c.

Теперь нетрудно составить уравнение, — ведь за икс часов они выполняют работу в икс раз большую: x(1/a + 1/b + 1/c).

И все это должно быть равно единице: x(1/a + 1/b + 1/c) = 1.

Вот вы и составили уравнение, — похвалил Составитель.

— Теперь приведем подобные, — сказал Сева. Вспомнил, наверное, как он недавно оплошал.

— Нет, — возразил Составитель, — здесь я не вижу никаких подобных. Просто надо сложить три дроби, которые стоят в скобках. Для этого приведем их к общему знаменателю и введем дополнительные множители у каждой дроби.

— Это мы знаем, — вмешалась Таня и тут же написала: 1/a + 1/b + 1/c = bc/abc + ac/abc + ab/abc = (bc + ac + ab)/abc, или x × (bc + ac + ab)/abc = 1

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*