Том Клэнси - Охота за «Красным Октябрём»
– На подводном ракетоносце? Ты бы разместил их на стратегическом ракетоносце?
– Русские – странный народ, Джек, их проектировщики мыслят весьма своеобразно. Это те самые парни, что построили крейсер типа «Киров» с атомным реактором и паровой двигательной установкой на дизельном топливе. Гм… два гребных винта. Кормовые люки не могут быть предназначены для буксируемой гидролокационной антенны – она будет мешать работе винтов.
– А если они остановят один винт?
– Русские поступают так с надводными кораблями для экономии топлива, а иногда – и с ударными подлодками. Управление двухвинтовым подводным ракетоносцем с одним выключенным винтом дело, наверно, весьма сложное. Говорят, что лодки типа «тайфун» и без того плохо поддаются управлению, а лодки с непредсказуемым поведением очень чувствительны к мощности, передаваемой на винтомоторную группу. Может случится, что её начнёт бросать из сторону в сторону, так что придерживаться заданного курса будет непросто. Ты заметил, что люки на корме сближаются?
– Нет.
Тайлер поднял голову.
– Черт побери! Как я сразу не сообразил?! Да это же водомётная движительная система! От этих курсантских работ у меня явное размягчение мозгов.
– Движительная система?
– Мы приглядывались к ней – лет двадцать назад, когда я ещё здесь учился. Впрочем, дальше экспериментов дело не пошло. Система оказалась недостаточно эффективной.
– Расскажи поподробнее.
– Эта система называется туннельной. Знаешь гидроэлектростанции в западных штатах? Это же по большей части плотины. Вода падает на колёса турбин, вращающих генераторы. А теперь создано несколько новых гидроэлектростанций, которые действуют вроде как наоборот. Их устанавливают в подземных реках, и текущая вода вращает импеллеры, а уже те в свою очередь вращают генераторы вместо модифицированного мельничного колеса. Импеллер – крыльчатка – походит на гребной винт, только в движение его приводит вода, а он сообщает движение судну за счёт отбрасывания воды. Существуют и другие незначительные технические различия, но ничего существенного. Пока тебе все понятно? Так вот, при этой движительной системе все происходит наоборот. Вода всасывается в носовой люк, а затем импеллеры выбрасывают её через кормовое отверстие, и образовавшаяся водная струя приводит в движение корабль. – Тайлер замолчал и нахмурился. – Насколько я помню, при этой системе на каждый туннель требуется больше одного импеллера. Эту систему подвергли испытаниям в начале шестидесятых годов и построили экспериментальную модель, прежде чем окончательно отказаться от неё. Одним из недостатков её явилось ещё и то, что один импеллер действует не так эффективно, как несколько. Что-то тут связанно с обратным давлением. Это был новый принцип, и возникли неожиданные трудности. В конце концов, если я не ошибаюсь, смонтировали четыре импеллера, и установка, должно быть, походила на осевой компрессор в турбореактивном двигателе.
– Почему от неё отказались? – спросил Райан, делая пометки в блокноте.
– Главным образом из-за недостаточной эффективности. Независимо от мощности двигателей в трубы можно засосать всего лишь ограниченный объём воды. Кроме того, подобная движительная система занимает много места. От этого недостатка вроде бы удалось отчасти избавиться, установив новый тип электрического индукционного двигателя, но даже в этом случае внутри корпуса находится масса дополнительных механизмов. На подлодках мало места, даже на громадинах вроде вот этой. Удалось добиться предельной скорости примерно в десять узлов, а это слишком мало, несмотря на то что при использовании такой установки почти полностью исчезали кавитационные шумы.
– Кавитационные шумы?
– Когда гребной винт с большой скоростью вращается в водной среде, позади задней кромки лопасти образуется участок пониженного давления. При этом часть воды испаряется, превращаясь в массу воздушных пузырьков. Они быстро исчезают под давлением воды, вода рвётся на их место и с силой бьёт по лопастям гребного винта. Это приводит к нескольким нежелательным последствиям. Во-первых, увеличивается шум, а подводники всячески стараются избегать его. Далее, кавитация вызывает вибрацию, что тоже крайне вредно. На старых пассажирских лайнерах, например, вибрация в районе кормы порой доходила до нескольких дюймов. Требуются колоссальные силы, чтобы заставить вибрировать корабль водоизмещением в пятьдесят тысяч тонн! Такие силы ведут к преждевременному разрушению корпуса. Наконец, многократно повторяющиеся гидравлические удары приводят к интенсивному износу лопастей. Большие гребные винты выдерживают всего несколько лет эксплуатации. Вот почему в прошлом их устанавливали на втулках осей, вместо того чтобы отливать как единое целое. Вибрация мешает главным образом надводным кораблям, и в конце концов удалось избежать разрушения винтов путём совершенствования технологии отливки. Так вот, туннельная движительная система позволяет избежать кавитации. Вернее, кавитация по-прежнему возникает, но шум от неё почти полностью поглощается в туннеле. Это большое достижение. Проблема, однако, заключается в том, что невозможно заставить подлодку развить высокую скорость без значительного увеличения размеров туннеля, а это практически неосуществимо. Пока одна исследовательская группа занималась туннельным движителем, другая работала над совершенствованием формы гребного винта. Сегодня винт подводной лодки очень велик и потому способен придавать ей высокую скорость при малом количестве оборотов. При уменьшении числа оборотов гребного винта кавитация исчезает. Кроме того, кавитация уменьшается с глубиной погружения. На глубине в несколько сотен футов давление воды препятствует образованию воздушных пузырьков.
– Тогда почему бы русским просто не скопировать форму нашего гребного винта?
– По-видимому, по нескольким причинам. Форма винта должна соответствовать определённым очертаниям корпуса подлодки и работе двигательной установки, так что копирование не станет для них автоматическим решением проблемы. К тому же значительная часть проектирования все ещё осуществляется эмпирическим путём, все тот же метод проб и ошибок. Проектирование формы гребного винта намного труднее, чем, например, проектирование профиля крыла самолёта, потому что поперечное сечение лопасти резко меняется от одной точки к другой. Кроме того, думаю, ещё одной причиной является то, что их металлургическая технология отстаёт от нашей – вот почему реактивные и ракетные двигатели русских менее эффективны, чем американские. Поэтому в новых проектах огромное внимание уделяется высокопрочным сплавам. Это узкая область, и я тут могу говорить только в общих чертах.
– Итак, по твоему мнению, речь идёт о бесшумной движительной системе, способной развивать скорость не выше десяти узлов? – Райану хотелось уяснить все как можно точнее.
– Это приблизительная цифра. Тут не обойтись без компьютерного моделирования, чтобы получить более точные данные. Не исключено, что материалы на этот счёт все ещё хранятся где-то в лаборатории Тейлора. – Тайлер имел в виду исследовательскую лабораторию Управления морских систем на северном берегу реки Северн. – Вероятно, эти данные до сих пор остаются секретными, и мне придётся отнестись к ним весьма критически.
– Почему?
– Эти исследования проводились двадцать лет назад. Экспериментировали только с пятнадцатифутовой моделью – для такой работы подобные размеры слишком малы. Не забудь, что они и тут натолкнулись на серьёзное препятствие – обратное давление, о котором я говорил. Вполне возможно, что это было не единственным препятствием. Думаю, они пробовали использовать компьютерное моделирование, но даже в этом случае техника математического моделирования в то время была очень примитивной. Чтобы повторить сегодня эти исследования мне придётся запросить старые данные и программы из лаборатории Тейлора, проверить их и затем составить новую программу, основанную вот на этой конфигурации корпуса. – Скип постучал пальцем по фотографиям. – После этого для прогона программы мне понадобится доступ к большому универсальному компьютеру.
– Но ты можешь сделать это?
– Конечно. Мне нужны точные размеры этой крошки, но я уже занимался такой работой для парней из Кристалл-Сити. Самым трудным будет получить машинное время. Мне нужен самый мощный компьютер.
– Постараюсь раздобыть тебе такой.
– Постараюсь – недостаточно убедительно, Джек. Расчёты необходимые для решения такой проблемы, можно произвести только на компьютере «Крей-2», самом совершенном. Чтобы сделать то, о чём ты говоришь, нужно математически смоделировать поведение миллионов мельчайших частиц воды, обтекающей со всех сторон – а в нашем случае и сквозь – корпус подводной лодки. НАСА пришлось проделать аналогичную работу со своим «шаттлом» – космическим челноком. Сама по себе работа не такая уж и сложная – трудность заключается только в объёме. Расчёты простые, но основаны на миллионах действий в секунду. Это означает, что решить проблему может лишь большой «Крей» с его быстродействием, а их существует всего несколько. По-моему, один такой в Хьюстоне у НАСА. Пара в Норфолке у ВМС – они пользуются такими компьютерами для исследования проблем противолодочной обороны. О них можешь забыть. Ещё один есть, кажется, у ВВС в Пентагоне, а остальные в Калифорнии.